|
|
Search Results: All Fields similar to 'Pioneer' and Where equal to 'Jet Propulsion Laboratory'
|
Printer Friendly |
Pioneer 4
| title |
Pioneer 4 |
| date |
03.03.1959 |
| description |
Pioneer 4 was a spin stabilized spacecraft launched on a lunar flyby trajectory and into a heliocentric orbit making it the first US probe to escape from the Earth's gravity. It carried a payload similar to Pioneer 3: a lunar radiation environment experiment using a Geiger-Mueller tube detector and a lunar photography experiment. It passed within 60,000 km of the Moon's surface. However, Pioneer 4 did not come close enough to trigger the photoelectric sensor. No lunar radiation was detected. The spacecraft was still in solar orbit as of 1969. *Image Credit*: NASA |
|
First to Saturn
| title |
First to Saturn |
| description |
An artist's view of a Pioneer spacecraft heading into interstellar space. Both Pioneer 10 and 11 are on trajectories that will eventually take them out of our solar system. Pioneer 11 sent its last signal in November 1995. NASA maintained contact with Pioneer 10 until January 2003. *Image Credit*: NASA |
|
Pioneer 10 Construction
| title |
Pioneer 10 Construction |
| date |
12.20.1971 |
| description |
Pioneer 10 in the final stage of construction in at the TRW plant in Southern California. *Image Credit*: NASA Ames Research Center |
|
Pioneer 10 Trajectory
| Title |
Pioneer 10 Trajectory |
| Full Description |
This image, drawn in 1970, is an artist's rendering of the Pioneer 10 spacecraft trajectory, with the planets labeled and a list of the instruments that were intended to be flown. Before the use of computer animation, artists were hired by JPL and NASA to depict a spacecraft in flight, for use as a visual aid to promote the project during development. Pioneer 10 was managed by NASA Ames Research Center in Moffett Field, California. The Pioneer F spacecraft, as it was known before launch, was designed and built by TRW Systems Group, Inc. JPL developed three instruments that flew on the spacecraft: Magnetic Fields, S-Band Occultation, and Celestial Mechanics, as well as running the Deep Space Network which provided tracking and data system support. Caltech was responsible for the Jovian Infrared Thermal Structure experiment. Pioneer was very successful, crossing the orbit of Mars and the asteroid belt beyond it, encountering, studying, and photographing Jupiter, then crossing the orbits of Saturn, Uranus, and Neptune. It left the solar system in 1983 and has been contacted several times in the past few years. As of July 2001, the spacecraft was still able to send a return signal to Earth. At Jupiter, the experiments of Pioneer were used to examine the environmental and atmospheric characteristics of the giant planet. Pioneer was also the vital precursor to all future flights to the outer solar system. It determined that a spacecraft could safely fly through the asteroid belt. It also measured the intensity of Jupiter's radiation belt so that NASA could design future Jupiter (and other outer planets) orbiters. |
| Date |
03/07/1972 |
| NASA Center |
Jet Propulsion Laboratory |
|
Pioneer I on the Launch Pad
| title |
Pioneer I on the Launch Pad |
| date |
10.11.1958 |
| description |
Thor-Able I with the Pioneer I spacecraft atop, prior to launch at Eastern Test Range at what is now Kennedy Space Center. Pioneer I launched on October 11, 1958, the first spacecraft launched by the 11 day old National Aeronautics and Space Administration. Although it failed to reach the Moon it did transmit 43 hours of data. *Image Credit*: NASA |
|
Pioneering Venus
| title |
Pioneering Venus |
| description |
An ultraviolet image of Venus' clouds as seen by the Pioneer Venus orbiter in 1979. Pioneer Venus used an orbiter and several small probes to study the planet from above and within the clouds. This image is from the orbiter. *Image Credit*: NASA |
|
Pioneer 1
| title |
Pioneer 1 |
| date |
10.11.1958 |
| description |
Pioneer 1, the second and most successful of three project Able space probes and the first spacecraft launched by the newly formed NASA, was intended to study the ionizing radiation, cosmic rays, magnetic fields, and micrometeorites in the vicinity of the Earth and in lunar orbit. Due to a launch vehicle malfunction, the spacecraft attained only a ballistic trajectory and never reached the Moon. It did return data on the near-Earth space environment. *Image Credit*: NASA |
|
Pioneer III Probe
| Title |
Pioneer III Probe |
| Full Description |
Looking more like surgeons, these technicians wearing "cleanroom" attire inspect the Pioneer III probe before shipping it to Cape Canaveral, Florida. Pioneer III was launched on December 6, 1958 aboard a Juno II rocket at the Atlantic Missile Range, Cape Canaveral, Florida. The mission objectives were to measure the radiation intensity of the Van Allen radiation belt, test long range communication systems, the launch vehicle and other subsystems. The Juno II failed to reach proper orbital escape velocity. The probe re-entered the Earth's atmosphere on December 7th ending its brief mission. |
| Date |
01/01/1961 |
| NASA Center |
Jet Propulsion Laboratory |
|
Global view of Venus from Ma
| Title |
Global view of Venus from Magellan, Pioneer, and Venera data |
| Description |
Global view of Venus is created from Magellan, Pioneer, and Venera data. The northern hemisphere of Venus is displayed in this global view of Venus' surface. The north pole is at the center of the image. Zero degrees, 90 degrees, 180 degrees, and 270 degrees east longitude are at the 6, 3, 12, and 9 o'clock positions, respectively, of an imaginary clock face. Magellan synthetic aperture radar mosaics from the first cycle of Magellan mapping are mapped onto a computer-simulated globe to create this image. Data gaps are filled with Pioneer-Venus orbiter data, or a constant mid-range value. Simulated color is used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the Jet Propulsion Laboratory (JPL) Multimission Image Processing Laboratory and is a single frame from a video released at the JPL news conference, 10-29-91. |
| Date Taken |
1991-11-07 |
|
Juno II
| title |
Juno II |
| date |
03.03.1959 |
| description |
Von Braun and his team were responsible for the Jupiter-C hardware. The family of launch vehicles, developed by the team, also came to include the Juno II used to launch the Pioneer IV satellite on March 3, 1959. Pioneer IV passed within 37,000 miles of the moon before going into solar orbit. *Image Credit*: NASA |
|
Global view of Venus from Ma
| Title |
Global view of Venus from Magellan, Pioneer, and Venera data |
| Description |
This global view of Venus, centered at 270 degrees east longitude, is a compilation of data from several sources. Magellan synthetic aperature radar mosaics from the first cycle of Magellan mapping are mapped onto a computer-simulated globe to create the image. Data gaps are filled with Pioneer-Venus orbiter data, or a constant mid-range value. Simulated color is used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the Jet Propulsion Laboratory (JPL) Multimission Image Processing Laboratory and is a single frame from a video released at the JPL news conference, 10-29-91. View provided by JPL with alternate number P-39225 MGN81. |
| Date Taken |
1991-11-07 |
|
Venera 15
| title |
Venera 15 |
| date |
06.02.1983 |
| description |
Venera 15 and Venera 16 were a pair of dedicated radar mappers designed to extend the studies begun by the American Pioneer Venus Orbiter in constructing a detailed map of the surface down to a resolution of about 1 to 2 kilometers. For these missions, Soviet engineers lengthened the central bus of the earlier Veneras (by 1 meter), installed much larger solar batteries, and attached a large side-looking radar antenna in place of the descent lander module on the earlier spacecraft. Venera 15 carried out two midcourse corrections (on 10 June 1983 and 1 October 1983) before successfully entering orbit around Venus at 03:05 UT on 10 October. Initial orbital parameters were 1,000 x 65,000 kilometers at 87° inclination -- that is, a near-polar orbit. The spacecraft's mapping operations began six days after entering orbit over the north pole. Because of the nature of the spacecraft's orbit, the two orbiters mapped only the area from 30° north latitude to the pole -- about 115 million square kilometers -- before the mission was completed on 10 July 1984. |
|
Pioneer 6
| title |
Pioneer 6 |
| date |
12.16.1965 |
| description |
Pioneer 6 was the first in a series of solar-orbiting, spin-stabilized, solar-cell and battery-powered satellites designed to obtain measurements on a continuing basis of interplanetary phenomena from widely separated points in space. Its experiments studied the positive ions and electrons in the solar wind, the interplanetary electron density (radio propagation experiment), solar and galactic cosmic rays, and the interplanetary magnetic field. Its main antenna was a high-gain directional antenna. The spacecraft was spin-stabilized at about 60 rpm, and the spin axis was perpendicular to the ecliptic plane and pointed toward the south ecliptic pole. By ground command, one of five bit rates, one of four data formats, and one of four operating modes could be selected. The five bit rates were 512, 256, 64, 16, and 8 bps. Three of the four data formats contained primarily scientific data and consisted of 32 seven-bit words per frame. One scientific data format was for use at the two highest bit rates. Another was for use at the three lowest bit rates. The third contained data from only the radio propagation experiment. The fourth data format contained mainly engineering data. The four operating modes were real time, telemetry store, duty cycle store, and memory readout. In the real-time mode, data were sampled and transmitted directly (without storage) as specified by the data format and bit rate selected. In the telemetry store mode, data were stored and transmitted simultaneously in the format and at the bit rate selected. In the duty-cycle store mode, a single frame of scientific data was collected and stored at a rate of 512 bps. The time interval between the collection and storage of successive frames could be varied by ground command between 2 and 17 min to provide partial data coverage for periods up to 19 h, as limited by the bit storage capacity. In the memory readout mode, data were read out at whatever bit rate was appropriate to the satellite distance from the earth. Although the spacecraft has not been regularly tracked for science data return in recent years, a successful telemetry contact was made on 8 Dec. 2000 to celebrate 35 years of continuous operation since launch. *Image Credit*: NASA |
|
Project Red Socks
| title |
Project Red Socks |
| date |
10.01.1957 |
| description |
Project RED SOCKS was to be "the world's first useful moon rocket," proposed by the Jet Propulsion Laboratory/California Institute of Technology in October 1957. These artist's renditions show the configuration of motors and a diagram of the moon orbit. RED SOCKS was to respond to the Sputnik launch challenge with a significant technological advance over the Soviet Union instead of merely matching them with another earth-orbiting satellite. The objectives of the project were to "1) get photos, 2) refine space guidance techniques, and 3) impress the world" with a series of nine rocket flights to the moon. The second of the nine flights was to take pictures of the back of the moon. The necessary technology had already been developed for earlier projects, such as the Re-entry Test Vehicle and the Microlock radio ground tracking system. Project RED SOCKS received no support in Washington. In December 1957, JPL and the Army Ballistic Missile Agency (ABMA) were instead asked to orbit an Earth satellite. Explorer 1 was launched 81 days later, on January 29, 1958. A modified RED SOCKS plan was carried out in the Pioneer 4 project in March 1959. *Image Credit*: NASA Jet Propulsion Laboratory |
|
Space Pioneer Nancy Roman
| title |
Space Pioneer Nancy Roman |
| date |
01.01.1962 |
| description |
Dr. Nancy Roman, one of the nations top scientists in the space program, is shown with a model of the Orbiting Solar Observatory (OSO). Roman received her PhD in astronomy from the University of Chicago in 1949. In 1959, Dr. Roman joined NASA and in 1960 served as Chief of the Astronomy and Relativity Programs in the Office of Space Science. She was very influential in creating satellites such as the Cosmic Background Explorer (COBE) and the Hubble Space Telescope (HST). She retired from NASA in 1979, but continued working as a contractor at the Goddard Space Flight Center. Throughout her career, Dr. Roman was a spokesperson and advocate of women in the sciences. *Image Credit*: NASA |
|
Dr. Robert Goddard
| title |
Dr. Robert Goddard |
| date |
01.01.1932 |
| description |
The Goddard Space Flight Center was named in honor of Dr. Robert Goddard, a pioneer in rocket development. Dr. Goddard received patents for a multi-stage rocket and liquid propellants in 1914 and published a paper describing how to reach extreme altitudes six years later. That paper, "A Method of Reaching Extreme Altitudes," detailed methods for raising weather-recording instruments higher than what could be achieved by balloons and explained the mathematical theories of rocket propulsion. The paper, which was published by the Smithsonian Institution, also discussed the possibility of a rocket reaching the moon -- a position for which the press ridiculed Goddard. Yet several copies of the report found their way to Europe, and by 1927, the German Rocket Society was established, and the German Army began its rocket program in 1931. Goddard, meanwhile, continued his work. By 1926, he had constructed and tested the first rocket using liquid fuel. Goddard's work largely anticipated in technical detail the later German V-2 missiles, including gyroscopic control, steering by means of vanes in the jet stream of the rocket motor, gimbal-steering, power-driven fuel pumps and other devices. *Image Credit*: NASA |
|
NASA's Hubble Space Telescop
| Title |
NASA's Hubble Space Telescope Produces Clear Color Photo of Jupiter |
|
Hemispheric View of Venus Ce
PIA00157
Sol (our sun)
Imaging Radar
| Title |
Hemispheric View of Venus Centered at 0 Degrees East Longitude |
| Original Caption Released with Image |
The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered at 0 degrees east longitude. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters, the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ. |
|
Hemispheric View of Venus Ce
PIA00159
Sol (our sun)
Imaging Radar
| Title |
Hemispheric View of Venus Centered at 180 Degrees East Longitude |
| Original Caption Released with Image |
The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered at 180 degrees east longitude. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters, the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ. |
|
Hemispheric View of Venus Ce
PIA00158
Sol (our sun)
Imaging Radar
| Title |
Hemispheric View of Venus Centered at 90 Degrees East Longitude |
| Original Caption Released with Image |
The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered at 90 degrees east longitude. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters, the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ. |
|
Hemispheric View of Venus Ce
PIA00160
Sol (our sun)
Imaging Radar
| Title |
Hemispheric View of Venus Centered at 270 Degrees East Longitude |
| Original Caption Released with Image |
The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered at 270 degrees east longitude. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters, the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ. |
|
Hemispheric View of Venus Ce
PIA00007
Sol (our sun)
Imaging Radar
| Title |
Hemispheric View of Venus Centered at the North Pole |
| Original Caption Released with Image |
The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered on the North Pole. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters, the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ. |
|
Hemispheric View of Venus Ce
PIA00008
Sol (our sun)
Imaging Radar
| Title |
Hemispheric View of Venus Centered at the South Pole |
| Original Caption Released with Image |
The hemispheric view of Venus, as revealed by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered on the South Pole. The Magellan spacecraft imaged more than 98% of Venus at a resolution of about 100 meters, the effective resolution of this image is about 3 km. A mosaic of the Magellan images (most with illumination from the west) forms the image base. Gaps in the Magellan coverage were filled with images from the Earth-based Arecibo radar in a region centered roughly on 0 degree latitude and longitude, and with a neutral tone elsewhere (primarily near the south pole). The composite image was processed to improve contrast and to emphasize small features, and was color-coded to represent elevation. Gaps in the elevation data from the Magellan radar altimeter were filled with altimetry from the Venera spacecraft and the U.S. Pioneer Venus missions. An orthographic projection was used, simulating a distant view of one hemisphere of the planet. The Magellan mission was managed for NASA by the Jet Propulsion Laboratory (JPL), Pasadena, CA. Data processed by JPL, the Massachusetts Institute of Technology, Cambridge, MA, and the U.S. Geological Survey, Flagstaff, AZ. |
|
Venus - Computer Simulated G
PIA00271
Sol (our sun)
Imaging Radar
| Title |
Venus - Computer Simulated Global View of the Northern Hemisphere |
| Original Caption Released with Image |
The northern hemisphere is displayed in this global view of the surface of Venus. The north pole is at the center of the image, with 0 degrees, 90 degrees, 180 degrees, 270 degrees east longitudes at the 6, 3, 12, and 9 o'clock positions, respectively, of an imaginary clock face. Magellan synthetic aperture radar mosaics from the three eight-month cycles of Magellan radar mapping are mapped onto a computer-simulated globe to create this image. Magellan obtained coverage of 98 percent of the surface of Venus. Remaining gaps are filled with data from previous missions, (the Soviet Venera 15 and 16 radar and Pioneer Venus Orbiter altimetry) and data from Earth-based radar observations from the Arecibo radio telescope. Simulated color is used to enhance small-scale structures. The simulated hues are based on color images recorded by the Venera 13 and 14 landing craft. Maxwell Montes, the planet's highest mountain at 11 kilometers (6.6 miles) above the average elevation, is the bright feature in the lower center of the image. Other terrain types visible in this image include tessera, ridge belts, lava flows, impact craters and coronae. The image was produced by the Solar System Visualization Project and the Magellan Science team at the Jet Propulsion Laboratory Multimission Image Processing Laboratory. The Magellan mission is managed by JPL for NASA's Office of Space Science. |
|
Hubble Provides Clear Images
| Title |
Hubble Provides Clear Images of Saturn's Aurora |
| General Information |
What is an American Astronomical Society Meeting release? A major news announcement issued at an American Astronomical Society meeting, the premier astronomy conference. Here is the picture of Saturn taken by the Hubble telescope in ultraviolet light. The glowing, swirling material at Saturn's poles is its auroral "curtains," rising more than a thousand miles above the cloud tops. Saturn's auroral displays are caused by an energetic wind from the Sun that sweeps over the planet, much like Earth's aurora, which is occasionally seen in the nighttime sky. The process that triggers these auroras is similar to the phenomenon that causes fluorescent lamps to glow. |
|
Venus - Comparison of Initia
| Title |
Venus - Comparison of Initial Magellan Radar Test and Data Acquired in 4/91 |
| Description |
This image compares Magellan data acquired in August 1990 during the initial test of the radar system (black and white insets) with data acquired by the spacecraft in April 1991 (color background). The area is in the southern hemisphere of Venus, and represents an area about 540 kilometers (330 miles) on a side, centered on latitude 35 degrees south and longitude 294 degrees east. The Magellan radar illuminates the surface from the left. The northern and eastern parts of the area consist of plains which appear moderately dark to dark on the radar image because they are relatively smooth at a scale comparable to the wavelength of the radar, 12.5 centimeters (about 5 inches). The bright terrain in the southwestern part of the image is about 500 to 700 meters (1640 to 2300 feet) higher than the plains, it is characterized by abundant faults and fractures, which appear as straight to gently curved bright lines. Many of these linear features are large enough to infer that they are grabens, which are troughs bounded on both sides by faults. However, many of them are too narrow to determine if they are faults or simply fractures that have roughened the surface. This elevated faulted and fractured region is part of a large east-west elongated ridge mapped by the Pioneer Venus radar altimeter, the portion shown here is about midway between Themis Regio and Tefnut Mons. The plains are probably underlain by volcanic lavas. The various shades indicate that minor differences in surface roughness are present, and these may be used to map out the distribution of different lavas. The small, bright patches on the plains represent places where the lava surfaces are relatively rough. Just left of the center of the image is a sharply defined volcanic crater about 15 kilometers (9 miles) in diameter. Immediately north of this crater are numerous round spots about 204 kilometers (102 miles) across that are small volcanic domes. |
| Date |
04.28.1991 |
|
Venus - Computer Simulated G
PIA00270
Sol (our sun)
Imaging Radar
| Title |
Venus - Computer Simulated Global View Centered at 90 Degrees East Longitude |
| Original Caption Released with Image |
This global view of the surface of Venus is centered at 90 degrees east longitude. Magellan synthetic aperture radar mosaics from the three eight-month cycles of Magellan radar mapping are mapped onto a computer-simulated globe to create this image. Magellan obtained coverage of 98 percent of the surface of Venus. Remaining gaps are filled with data from previous Venus missions -- the Venera 15 and 16 radar and Pioneer-Venus Orbiter altimetry -- and data from Earth-based radar observations from the Arecibo radio telescope. Simulated color is used to enhance small-scale structures. The simulated hues are based on color images obtained by the Venera 13 and 14 landing craft. The bright feature near the center of the image is Ovda Regio, a mountainous region in the western portion of the great Aphrodite equatorial highland. The dark areas scattered across the Venusian plains consist of extremely smooth deposits associated with large meteorite impacts. The image was produced by the Solar System Visualization Project and the Magellan Science team at the Jet Propulsion Laboratory Multimission Image Processing Laboratory. The Magellan mission is managed by JPL for NASA's Office of Space Science. |
|
Kuiper Crater
PIA02411
Sol (our sun)
Imaging Science Subsystem -
| Title |
Kuiper Crater |
| Original Caption Released with Image |
The Mariner 10 Television-Science Team has proposed the name "Kuiper" for this very conspicuous bright Mercury crater (top center) on the rim of a larger older crater. Prof. Gerard P. Kuiper, a pioneer in planetary astronomy and a member of the Mariner 10 TV team, died December 23, 1973, while the spacecraft was enroute to Venus and Mercury. Mariner took this picture (FDS 27304) from 88,450 kilometers (55,000 miles) some 2 1/2 hours before it passed Mercury on March 29. The bright-floored crater, 41 kilometers (25 miles) in diameter, is the center of a very large bright are which could be seen in pictures sent from Mariner 10 while Mercury was more than two million miles distant. The larger crater is 80 kilometers (50 miles) across. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University |
|
Hubble Provides Clear Images
PIA01269
Sol (our sun)
Wide Field Planetary Camera
| Title |
Hubble Provides Clear Images of Saturn's Aurora |
| Original Caption Released with Image |
Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science. This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/, This is the first image of Saturn's ultraviolet aurora taken by the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope in October 1997, when Saturn was a distance of 810 million miles (1.3 billion kilometers) from Earth. The new instrument, used as a camera, provides more than ten times the sensitivity of previous Hubble instruments in the ultraviolet. STIS images reveal exquisite detail never before seen in the spectacular auroral curtains of light that encircle Saturn's north and south poles and rise more than a thousand miles above the cloud tops. Saturn's auroral displays are caused by an energetic wind from the Sun that sweeps over the planet, much like the Earths aurora that is occasionally seen in the nighttime sky and similar to the phenomenon that causes fluorescent lamps to glow. But unlike the Earth, Saturn's aurora is only seen in ultraviolet light that is invisible from the Earths surface, hence the aurora can only be observed from space. New Hubble images reveal ripples and overall patterns that evolve slowly, appearing generally fixed in our view and independent of planet rotation. At the same time, the curtains show local brightening that often follow the rotation of the planet and exhibit rapid variations on time scales of minutes. These variations and regularities indicate that the aurora is primarily shaped and powered by a continual tug-of-war between Saturn's magnetic field and the flow of charged particles from the Sun. Study of the aurora on Saturn had its beginnings just seventeen years ago. The Pioneer 11 spacecraft observed a far-ultraviolet brightening on Saturn's poles in 1979. The Saturn flybys of the Voyager 1 and 2 spacecraft in the early 1980s provided a basic description of the aurora and mapped for the first time planets enormous magnetic field that guides energetic electrons into the atmosphere near the north and south poles. The first images of Saturn's aurora were provided in 1994-5 by the Hubble Space Telescopes Wide Field and Planetary Camera (WFPC2). Much greater ultraviolet sensitivity of the new STIS instrument allows the workings of Saturn's magnetosphere and upper atmosphere to be studied in much greater detail. These Hubble aurora investigations provide a framework that will ultimately complement the in situ measurements of Saturn's magnetic field and charged particles by NASA/ ESA's Cassini spacecraft, now en route to its rendezvous with Saturn early in the next decade. Two STIS imaging modes have been used to discriminate between ultraviolet emissions predominantly from hydrogen atoms (shown in red) and emissions due to molecular hydrogen (shown in blue). Hence the bright red aurora features are dominated by atomic hydrogen, while the white traces within them map the more tightly confined regions of molecular hydrogen emissions. The southern aurora is seen at lower right, the northern at upper left. The Wide Field/Planetary Camera 2 was developed by the Jet |
|
Hubble Observes Surface of T
| Title |
Hubble Observes Surface of Titan |
| Description |
Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science. This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/, Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia. Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere. Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory, John Caldwell of York University, Canada, Larry Sromovsky of the University of Wisconsin, and Michael Allison of the Goddard Institute for Space Studies, New York City. Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much thicker. Smith's group used the Hubble Space Telescope's WideField/Planetary Camera 2 at near-infrared wavelengths (between .85 and 1.05 microns). Titan's haze is transparent enough in this wavelength range to allow mapping of surface features according to their reflectivity. Only Titan's polar regions could not be mapped this way, due to the telescope's viewing angle of the poles and the thick haze near the edge of the disk. Their image-resolution (that is, the smallest distance seen in detail) with the WFPC2 at the near-infrared wavelength is 360 miles. The 14 images processed and compiled into the Titan surface map were as "noise" free, or as free of signal interference, as the space telescope allows, Smith said. Titan makes one complete orbit around Saturn in 16 days, roughly the duration of the imaging project. Scientists have suspected that Titan's rotation also takes 16 days, so that the same hemisphere of Titan always faces Saturn, just as the same hemisphere of the Earth's moon, always faces the Earth. Recent observations by Lemmon and colleagues at the University of Arizona confirm this true. It's too soon to conclude much about what the dark and bright areas in the Hubble Space Telescope images are -- continents, oceans, impact craters or other features, Smith said. Scientists have long suspected that Titan's surface was covered with a global ehtane-methane ocean. The new images show that there is at least some solid surface. Smith's team made a total 50 images of Titan last month in their program, a project to search for small scale features in Titan's lower atmosphere and surface. They have yet to analyze images for information about Titan's clouds and winds. That analysis could help explain if the bright areas are major impact craters in the frozen water ice-and-rock or higher-altitude features. The images are important information for the Cassini mission, which is to launch a robotic spacecraft on a 7-year journey to Saturn in October 1997. About three weeks before Cassini's first flyby of Titan, the spacecraft is to release the European Space Agency's Huygens Probe to parachute to Titan's surface. Images like Smith's team has taken of Titan can be used to identify choice landing spots - - and help engineers and scientists understand how Titan's winds will blow the parachute through the satellite's atmosphere. UA scientists play major roles in the Cassini mission: Carolyn C. Porco, an associate professor at the Lunar and Planetary Laboratory, leads the 14-member Cassini Imaging Team. Jonathan I. Lunine, also an associate professor at the lab, is the only American selected by the European Space Agency to be on the three-member Huygens Probe interdisciplinary science team. Smith is a member of research professor Martin G. Tomasko's international team of scientists who will image the surface of Titan in visible light and in color with the Descent Imager/Spectral Radiometer, one of five instruments in the Huygens Probe's French, German, Italian and U.S. experiment payload. Senior research associate Lyn R. Doose is also on Tomasko's team. Lunine and LPL professor Donald M. Hunten are members of the science team for another U.S. instrument on that payload, the gas chromatograph mass spectrometer. Hunten was on the original Cassini mission science definition team back in 1983. PHOTO CAPTION: Four global projections of the HST Titan data, separated in longitude by 90 degrees. Upper left: hemisphere facing Saturn. Upper right: leading hemisphere (brightest region). Lower left: the hemisphere which never faces Saturn. Lower right: trailing hemisphere. Not that these assignments assume that the rotation is synchronous. The imaging team says its data strongly support this assumption -- a longer time baseline is needed for proof. The surface near the poles is never visible to an observer in Titan's equatorial plane because of the large optical path. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion |
| Date |
11.08.1994 |
|
Hubble Observes Surface of T
PIA01465
Saturn
Wide Field Planetary Camera
| Title |
Hubble Observes Surface of Titan |
| Original Caption Released with Image |
Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science. This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/, Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia. Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere. Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory, John Caldwell of York University, Canada, Larry Sromovsky of the University of Wisconsin, and Michael Allison of the Goddard Institute for Space Studies, New York City. Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much thicker. Smith's group used the Hubble Space Telescope's WideField/Planetary Camera 2 at near-infrared wavelengths (between .85 and 1.05 microns). Titan's haze is transparent enough in this wavelength range to allow mapping of surface features according to their reflectivity. Only Titan's polar regions could not be mapped this way, due to the telescope's viewing angle of the poles and the thick haze near the edge of the disk. Their image-resolution (that is, the smallest distance seen in detail) with the WFPC2 at the near-infrared wavelength is 360 miles. The 14 images processed and compiled into the Titan surface map were as "noise" free, or as free of signal interference, as the space telescope allows, Smith said. Titan makes one complete orbit around Saturn in 16 days, roughly the duration of the imaging project. Scientists have suspected that Titan's rotation also takes 16 days, so that the same hemisphere of Titan always faces Saturn, just as the same hemisphere of the Earth's moon, always faces the Earth. Recent observations by Lemmon and colleagues at the University of Arizona confirm this true. It's too soon to conclude much about what the dark and bright areas in the Hubble Space Telescope images are -- continents, oceans, impact craters or other features, Smith said. Scientists have long suspected that Titan's surface was covered with a global ehtane-methane ocean. The new images show that there is at least some solid surface. Smith's team made a total 50 images of Titan last month in their program, a project to search for small scale features in Titan's lower atmosphere and surface. They have yet to analyze images for information about Titan's clouds and winds. That analysis could help explain if the bright areas are major impact craters in the frozen water ice-and-rock or higher-altitude features. The images are important information for the Cassini mission, which is to launch a robotic spacecraft on a 7-year journey to Saturn in October 1997. About three weeks before Cassini's first flyby of Titan, the spacecraft is to release the European Space Agency's Huygens Probe to parachute to Titan's surface. Images like Smith's team has taken of Titan can be used to identify choice landing spots - - and help engineers and scientists understand how Titan's winds will blow the parachute through the satellite's atmosphere. UA scientists play major roles in the Cassini mission: Carolyn C. Porco, an associate professor at the Lunar and Planetary Laboratory, leads the 14-member Cassini Imaging Team. Jonathan I. Lunine, also an associate professor at the lab, is the only American selected by the European Space Agency to be on the three-member Huygens Probe interdisciplinary science team. Smith is a member of research professor Martin G. Tomasko's international team of scientists who will image the surface of Titan in visible light and in color with the Descent Imager/Spectral Radiometer, one of five instruments in the Huygens Probe's French, German, Italian and U.S. experiment payload. Senior research associate Lyn R. Doose is also on Tomasko's team. Lunine and LPL professor Donald M. Hunten are members of the science team for another U.S. instrument on that payload, the gas chromatograph mass spectrometer. Hunten was on the original Cassini mission science definition team back in 1983. PHOTO CAPTION: Four global projections of the HST Titan data, separated in longitude by 90 degrees. Upper left: hemisphere facing Saturn. Upper right: leading hemisphere (brightest region). Lower left: the hemisphere which never faces Saturn. Lower right: trailing hemisphere. Not that these assignments assume that the rotation is synchronous. The imaging team says its data strongly support this assumption -- a longer time baseline is needed for proof. The surface near the poles is never visible to an observer in Titan's equatorial plane because of the large optical path. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion |
|
|