Search Results: All Fields similar to 'Sun or Mercury or Venus or Mars or Jupiter or Saturn or Or or Uranus or Neptune or Pluto' and Where equal to 'Jet Propulsion Laboratory'

Printer Friendly
1 2 3 4178 179
1-50 of 8,930
     
     
Solar System Montage
Title Solar System Montage
Full Description This is a montage of planetary images taken by spacecraft managed by the Jet Propulsion Laboratory in Pasadena, CA. Included are (from top to bottom) images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus and Neptune. The spacecraft responsible for these images are as follows: the Mercury image was taken by Mariner 10, the Venus image by Magellan, the Earth image by Galileo, the Mars image by Viking, and the Jupiter, Saturn, Uranus and Neptune images by Voyager. Pluto is not shown as no spacecraft has yet visited it. The inner planets (Mercury, Venus, Earth, Moon, and Mars) are roughly to scale to each other, the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. Actual diameters are given below: Sun 1,390,000 km Mercury 4,879 km Venus 12,104 km Earth 12,756 km Moon 3,475 km Mars 6,794 km Jupiter 142.984 km Saturn 120,536 km Uranus 51,118 km Neptune 49,528 km Pluto 2,390 km
Date 04/09/1999
NASA Center Jet Propulsion Laboratory
All Planet Sizes
title All Planet Sizes
description This illustration shows the approximate sizes of the planets relative to each other. Outward from the Sun, the planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. Jupiter's diameter is about 11 times that of the Earth's and the Sun's diameter is about 10 times Jupiter's. Pluto's diameter is slightly less than one-fifth of Earth's. The planets are not shown at the appropriate distance from the Sun. *Image Credit*: Lunar and Planetary Laboratory
Solar System Family Portrait
title Solar System Family Portrait
description These six narrow-angle color images were made from the first ever 'portrait' of the solar system taken by Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length). *Image Note*: This 'Portrait' contains 18 frames taken through the Narrow Angle camera using the Violet, Blue, and Green Filters. The label information describes only 3 of these frames. *Image Credit*: NASA
Solar System Montage
Title Solar System Montage
Description This is a montage of planetary images taken by spacecraft managed by the Jet Propulsion Laboratory in Pasadena, CA. Included are (from top to bottom) images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus and Neptune. The spacecraft responsible for these images are as follows: the Mercury image was taken by Mariner 10, the Venus image by Magellan, the Earth image by Galileo, the Mars image by Viking, and the Jupiter, Saturn, Uranus and Neptune images by Voyager.
Date 02.01.1996
Moons of the Solar System
title Moons of the Solar System
description All the planetary moons in our solar system are shown here at their correct relative size and true color. Their diversity of size and appearance is testament to the unique and fascinating geologic history that each of these bodies has undergone. Two of the moons are larger than the planet Mercury, and eight of them are larger than Pluto. Earth's Moon is the fifth largest of the set, with a diameter of 3476 kilometers (2160 miles). Most of the moons are thought to have formed from a disk of debris left over from formation of the planet they orbit. However Triton, Neptune's largest moon, and several of the smallest moons, including the moons of Mars, are thought to be captured planetesimals that formed elsewhere in the solar system. Earth's Moon is thought to have formed from the debris ejected from a roughly Mars-sized object colliding with the early Earth, perhaps a unique event in the history of the solar system. The moons are organized on the diagram by the planet they orbit (top to bottom with increasing distance from the Sun) and their position relative to the planet (left to right with increasing distance from the planet). Below is a listing of the names of all the moons and the planets they orbit. Most moons are named for mythological characters associated with the character the planet is named for. While most of the planets are named for Roman characters (with the exceptions of Pluto and Uranus), most of the moon have names from Greek mythology. For example, Phobos and Deimos are the sons of Ares, the Greek version of Mars. Jupiter?s moons are all named for lovers and other close associates of Zeus (Jupiter). Saturn?s moons are named for Titans, the race that included Cronos (Saturn), Zeus? father. Neptune?s moons are named for mythological characters associated with water, and Charon was the ferryman of the dead who brought people to Pluto?s realm. By tradition, the discoverer of a moon gets to name it (now subject to approval by the International Astronomical Union). The son of the discoverer of the first two moons of Uranus (Sir William Herschel) decided to name Uranus? moons not for mythological characters, but instead for the king and queen of fairies in Shakespear?s A Midsummer Night?s Dream . This began a tradition whereby all uranian satellites are named for fairy characters in English drama. To read more about the names of the planets and their satellites, go to the U.S. Geological Survey?s nomenclature guide at http://wwwflag.wr.usgs.gov/USGSFlag/Space/nomen/append7.html . *Earth* Moon *Mars * Phobos, Deimos *Jupiter* Metis, Adrastea, Amalthea, Thebe, Io, Europa, Ganymede, Callisto, Leda, Himalia, Lysithea, Elara, Ananke, Carme, Pasiphae, Sinope *Saturn * Pan, Atlas, Prometheus, Pandora, Epimetheus, Janus, Mimas, Enceladus, Tethys, Calypso, Telesto, Dione, Helene, Rhea, Titan, Hyperion, Iapetus, Phoebe *Uranus * Cordelia, Ophelia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, Belinda, Puck, Miranda,, Ariel, Umbriel, Titania, Oberon *Neptune* Naiad, Thalassa, Despina, Galatea, Larissa, Proteus, Triton, Nereid *Pluto * Charon *Image Credit*: Image processing by Tim Parker (Jet Propulsion Laboratory) and Paul Schenk and Robert Herrick (Lunar and Planetary Institute), based on NASA images.
Planet Temperatures
title Planet Temperatures
description In general, the surface temperature of the planets decreases with increasing distance from the Sun. Venus is an exception because its dense atmosphere acts as a greenhouse and heats the surface to above the melting point of lead (3280C). Mercury rotates slowly and has a thin atmosphere, and consequently, the nightside temperature can be more than 5000C lower than the dayside temperature shown on the diagram. Temperatures for the gas giants (Jupiter, Saturn, Uranus, and Neptune) are shown at a level in the atmosphere equal in pressure to sea level on Earth. Temperatures are in both Fahrenheit and Celsius, and the planets are not shown to scale. *Image Credit*: Lunar and Planetary Institute
Solar System Portrait - 60 F …
Title Solar System Portrait - 60 Frame Mosaic
Description The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever "portrait" of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun.
Date 06.06.1990
Uranus - Final Image
PIA00143
Sol (our sun)
Imaging Science Subsystem - …
Title Uranus - Final Image
Original Caption Released with Image This view of Uranus was recorded by Voyager 2 on Jan 25, 1986, as the spacecraft left the planet behind and set forth on the cruise to Neptune Voyager was 1 million kilometers (about 600,000 miles) from Uranus when it acquired this wide-angle view. The picture -- a color composite of blue, green and orange frames -- has a resolution of 140 km (90 mi). The thin crescent of Uranus is seen here at an angle of 153 degrees between the spacecraft, the planet and the Sun. Even at this extreme angle, Uranus retains the pale blue-green color seen by ground-based astronomers and recorded by Voyager during its historic encounter. This color results from the presence of methane in Uranus' atmosphere, the gas absorbs red wavelengths of light, leaving the predominant hue seen here. The tendency for the crescent to become white at the extreme edge is caused by the presence of a high-altitude haze Voyager 2 -- having encountered Jupiter in 1979, Saturn in 1981 and Uranus in 1986 -- will proceed on its journey to Neptune. Closest approach is scheduled for Aug 24, 1989. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Neptune
PIA02205
Sol (our sun)
Imaging Science Subsystem - …
Title Neptune
Original Caption Released with Image This image of the planet Neptune was taken by the Voyager 2spacecraft on January 23, 1989, about seven months before its scheduled August 25 encounter. The spacecraft was 310 million kilometers (192 million miles) from the planet, looking from 34 degrees south of Neptune's equator through the "clear" filter. Similar images from Earth-based telescopes had shown a featureless disk, through red filters, chosen to mark methane gas, revealed irregular-shaped features associated with high-altitude hazes. The Voyager data reveal cloud structure at lower altitudes where the circulation is apparently arranged in parallel east-west bands, as is the case on Jupiter, Saturn, and Uranus. In the original image, the bright bands are about 10 percent brighter than the dark band circling the South pole. This is about the same contrast shown by Saturn, and ten times more than Uranus. The brightening and sawtooth edge around the right side are artifacts of the data processing. The Voyager project is managed by the Jet Propulsion Laboratory for the NASA Office of Space Science and Applications.
Jupiter Flyby
title Jupiter Flyby
description Although the main mission of the New Horizons spacecraft is to explore the Pluto system and the Kuiper Belt of icy objects, it will first fly by the solar system's largest planet, Jupiter, in 2007 - a little over a year after the planned launch date. In this artist's rendering, New Horizons is just past its closest approach to the planet. Near the Sun are Earth, Venus and Mercury. The dim crescent shape at the upper right of the Sun is Callisto, the outermost of Jupiter's four largest moons. Just left of Jupiter is Europa. *Image Credit*: Southwest Research Institute (Dan Durda)/Johns Hopkins University Applied Physics Laboratory (Ken Moscati)
Charon Discovery Image
title Charon Discovery Image
date 06.22.1978
description On 22 June 1978, an astronomer at the U.S. Naval Observatory in Washington, D.C. was making routine measurements of photographic plates taken with the 1.55-meter (61-inch) Kaj Strand Astrometric Reflector at the USNO Flagstaff Station in Arizona. The purpose of these images was to refine the orbit of the far-flung planet Pluto to help compute a better ephemeris for this distant object. Astronomer James W. Christy had noticed that a number of the images of Pluto appeared elongated, but images of background stars on the same plate did not. Other plates showed the planet as a tiny, round dot. Christy examined a number of Pluto images from the USNO archives, and he noticed the elongations again. Furthermore, the elongations appeared to change position with respect to the stars over time. After eliminating the possibility that the elongations were produced by plate defects and background stars, the only plausible explanation was that they were caused by a previously unknown moon orbiting Pluto at a distance of about 19,600 kilometers (12,100 miles) with a period of just over six days. On 7 July 1978, the discovery was formally announced to the astronomical community and the world by the IAU Central Bureau for Astronomical Telegrams via IAU Circular 3241. The discovery received the provisional designation "1978 P 1", Christy proposed the name "Charon", after the mythological ferryman who carried souls across the river Acheron, one of the five mythical rivers that surrounded Pluto's underworld. Over the course of the next several years, another USNO astronomer, the late Robert S. Harrington, calculated that Pluto and its newly-found moon would undergo a series of mutual eclipses and occultations, beginning in early 1985. On 17 February 1985 the first successful observation of one of these transits was made at with the 0.9-meter (36-inch) reflector at the University of Texas McDonald Observatory, within 40 minutes of Harrington's predicted time. The IAU Circular announcing these confirming observations was issued on 22 February 1985. With this confirmation, the new moon was officially named Charon. Pluto was discovered at Lowell Observatory in 1930 by the late Clyde W. Tombaugh, an amateur astronomer from Kansas who was hired by the Observatory specifically to photograph the sky with a special camera and search for the planet predicted by the Observatory's founder, Percival Lowell. Lowell had deduced the existence of a "Planet X" by studying small anomalies in the orbits of Uranus and Neptune. As it turned out, Pluto's discovery was almost entirely serendipitous, Pluto's tiny mass was far too small to account for the anomalies, which were resolved when Voyager 2 determined more precise masses for Uranus and Neptune. The discovery of Charon has led to a much better understanding of just how tiny Pluto is. Its diameter is about 2274 km (1413 miles), and its mass is 0.25% of the mass of the Earth. Charon has a diameter of about 1172 kilometers (728, miles) and a mass of about 22% that of Pluto. The two worlds circle their common center of mass with a period of 6.387 days and are locked in a "super-synchronous" rotation: observers on Pluto's surface would always see Charon in the same part of the sky relative to their local horizon. Normally Pluto is considered the most distant world in the solar system, but during the period from January 1979 until February 1999 it was actually closer to the Sun than Neptune. It has the most eccentric and inclinced orbit of any of the major planets. This orbit won't bring Pluto back to its discovery position until the year 2178! *Image Credit*: U.S. Naval Observatory
Cosmic Conjunction
title Cosmic Conjunction
description Five planets - Mercury, Venus, Mars, Jupiter and Saturn - gather over the ancient Stonehenge monument in England. *Image Copyright*: Philip Perkins
Solar System Montage of Voya …
Title Solar System Montage of Voyager Images
Full Description This montage of images taken by the Voyager spacecraft of the planets and four of Jupiter's moons is set against a false-color Rosette Nebula with Earth's moon in the foreground. Studying and mapping Jupiter, Saturn, Uranus, Neptune, and many of their moons, Voyager provided scientists with better images and data than they had ever had before or expected from the program. Although launched sixteen days after Voyager 2, Voyager 1's trajectory was a faster path, arriving at Jupiter in March 1979. Voyager 2 arrived about four months later in July 1979. Both spacecraft were then directed to Saturn with Voyager 1 arriving in November 1980 and Voyager 2 in August 1981. Voyager 2 was then diverted to the remaining gas giants, Uranus in January 1986 and Neptune in August 1989. Data collection continues by both Voyager 1 and 2 as the renamed Voyager Interstellar Mission searches for the edge of the solar wind influence (the heliopause) and exits the Solar System. A shortened list of the discoveries of Voyager 1 and 2 include:the discovery of the Uranian and Neptunian magnetospheres (magnetic environments caused by various types of planet cores), the discovery of twenty-two new satellites including three at Jupiter, three at Saturn, ten at Uranus, and six at Neptune, Io was found to have active volcanism (the only other Solar System body than Earth to be confirmed), Triton was found to have active geyser-like structures and an atmosphere, Auroral Zones (where gases become excited after being hit by solar particles) were discovered at Jupiter, Saturn, and Neptune, Jupiter was found to have rings, Neptune, originally thought to be too cold to support such atmospheric disturbances, had large-scale storms.
Date UNKNOWN
NASA Center Jet Propulsion Laboratory
Gas Planet Sizes
title Gas Planet Sizes
description Jupiter, Saturn, Uranus, and Neptune are known as the jovian (Jupiter-like) planets because they are all gigantic compared with Earth, and they have a gaseous nature like Jupiter's. The jovian planets are also referred to as the gas giants, although some or all of them might have small solid cores. This diagram shows the approximate relative sizes of the jovian planets. *Image Credit*: Lunar and Planetary Institute
Gas Giant Interiors
title Gas Giant Interiors
description *Jupiter* Jupiter's composition is mainly hydrogen and helium. In contrast to planetary bodies covered with a hard surface crust (the Earth, for example), the jovian surface is gaseous-liquid, rendering the boundary between the atmosphere and the planet itself almost indistinguishable. Below the roughly 1000-kilometer-thick atmosphere, a layer of liquid hydrogen extends to a depth of 20,000 kilometers. Even deeper, it is believed that there is a layer of liquid metallic hydrogen at a pressure of 3 million bars. The planet core is believed to comprise iron-nickel alloy, rock, etc., at a temperature estimated to exceed 20,000C. *Saturn* As with Jupiter, Saturn is mainly composed of hydrogen and helium and is observed to be of extremely low density. In fact, Saturn's mean density is only about two-thirds that of water. The Saturn atmosphere comprises, in descending order of altitude, a layer of ammonia, a layer of ammonium hydrogen sulfide, and a layer of ice. Below this, the saturnian surface is a stratum of liquid hydrogen (as in the case of Jupiter) underlain with a layer of liquid metallic hydrogen. It is believed that the liquid hydrogen layer of Saturn is thicker than that of Jupiter, while the liquid metallic hydrogen layer may be thinner. The planet's core is estimated to be composed of rock and ice. *Uranus* Uranus is gaseous in composition, mainly comprising hydrogen and helium as in the case of Jupiter and Saturn. The planet atmosphere is mostly hydrogen but also includes helium and methane. The planet core is estimated to be rock and ice encompassed by an outer layer of ice comprised of water, ammonium, and methane. *Neptune * The atmosphere of Neptune consists of mainly hydrogen, methane and helium, similar to Uranus. Below it is a liquid hydrogen layer including helium and methane. The lower layer is made up of the liquid hydrogen compounds oxygen and nitrogen. It is believed that the planet core comprises rock and ice. Neptune's average density, as well as the greatest proportion of core per planet size, is the greatest among all the gaseous planets. *Image Credit:* Lunar and Planetary Institute
Pioneer 10 Trajectory
Title Pioneer 10 Trajectory
Full Description This image, drawn in 1970, is an artist's rendering of the Pioneer 10 spacecraft trajectory, with the planets labeled and a list of the instruments that were intended to be flown. Before the use of computer animation, artists were hired by JPL and NASA to depict a spacecraft in flight, for use as a visual aid to promote the project during development. Pioneer 10 was managed by NASA Ames Research Center in Moffett Field, California. The Pioneer F spacecraft, as it was known before launch, was designed and built by TRW Systems Group, Inc. JPL developed three instruments that flew on the spacecraft: Magnetic Fields, S-Band Occultation, and Celestial Mechanics, as well as running the Deep Space Network which provided tracking and data system support. Caltech was responsible for the Jovian Infrared Thermal Structure experiment. Pioneer was very successful, crossing the orbit of Mars and the asteroid belt beyond it, encountering, studying, and photographing Jupiter, then crossing the orbits of Saturn, Uranus, and Neptune. It left the solar system in 1983 and has been contacted several times in the past few years. As of July 2001, the spacecraft was still able to send a return signal to Earth. At Jupiter, the experiments of Pioneer were used to examine the environmental and atmospheric characteristics of the giant planet. Pioneer was also the vital precursor to all future flights to the outer solar system. It determined that a spacecraft could safely fly through the asteroid belt. It also measured the intensity of Jupiter's radiation belt so that NASA could design future Jupiter (and other outer planets) orbiters.
Date 03/07/1972
NASA Center Jet Propulsion Laboratory
Voyager Spacecraft During Vi …
Title Voyager Spacecraft During Vibration Testing
Full Description Two Voyager spacecraft were launched in 1977 to explore the outer planets and some of their satellites. A prototype Voyager spacecraft is shown at NASA's Jet Propulsion Laboratory in Pasadena, California, as it successfully passed vibration tests which simulated the expected launch environment. The large parabolic antenna at the top is 3.7 meters in diameter and was used at both S-band and X-band radio frequencies for communicating with Earth over the great distances from the outer planets. The spacecraft received electrical power from three nuclear power sources (lower left). The shiny cylinder on the left side under the antenna contained a folded boom, which extended after launch to hold a magnetometer instrument thirteen meters away from the body of the spacecraft. The truss-like structure on the right side is the stowed instrument boom which supported three science instruments and a scan platform. The scan platform allowed the accurate pointing of two cameras and three other science instruments at Jupiter, Saturn, the rings of Saturn, Jupiter's moons, Saturn's moons, Uranus, moons of Uranus, and Neptune.
Date 03/25/1977
NASA Center Jet Propulsion Laboratory
Saturn and its rings
PIA01969
Sol (our sun)
Imaging Science Subsystem - …
Title Saturn and its rings
Original Caption Released with Image Voyager 1 looked back at Saturn on Nov. 16, 1980, four days after the spacecraft flew past the planet, to observe the appearance of Saturn and its rings from this unique perspective. A few of the spokelike ring features discovered by Voyager appear in the rings as bright patches in this image, taken at a distance of 5.3 million kilometers (3.3 million miles) from the planet. Saturn's shadow falls upon the rings, and the bright Saturn crescent is seen through all but the densest portion of the rings. From Saturn, Voyager 1 is on a trajectory taking the spacecraft out of the ecliptic plane, away from the Sun and eventually out of the solar system (by about 1990). Although its mission to Jupiter and Saturn is nearly over (the Saturn encounter ends Dec. 18, 1980), Voyager 1 will be tracked by the Deep Space Network as far as possible in an effort to determine where the influence of the Sun ends and interstellar space begins. Voyager 1's flight path through interstellar space is in the direction of the constellation Ophiuchus. Voyager 2 will reach Saturn on August 25, 1981, and is targeted to encounter Uranus in 1986 and possibly Neptune in 1989. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California.
Voyager 2 Launch
Title Voyager 2 Launch
Full Description Voyager 2 was launched August 20, 1977, sixteen days before Voyager 1 aboard a Titan-Centaur rocket. Their different flight trajectories caused Voyager 2 to arrive at Jupiter four months later than Voyager 1, thus explaining their numbering. The initial mission plan for Voyager 2 specified visits only to Jupiter and Saturn. The plan was augmented in 1981 to include a visit to Uranus, and again in 1985 to include a flyby of Neptune. After completing the tour of the outer planets in 1989, the Voyager spacecraft began exploring interstellar space. The Voyager mission has been managed by NASA's Office of Space Science and the Jet Propulsion Laboratory.
Date 08/20/1977
NASA Center Kennedy Space Center
Voyager 2 Launch
title Voyager 2 Launch
date 08.20.1977
description Voyager 2 was launched August 20, 1977, sixteen days before Voyager 1 aboard a Titan-Centaur rocket. Their different flight trajectories caused Voyager 2 to arrive at Jupiter four months later than Voyager 1, thus explaining their numbering. The initial mission plan for Voyager 2 specified visits only to Jupiter and Saturn. The plan was augmented in 1981 to include a visit to Uranus, and again in 1985 to include a flyby of Neptune. After completing the tour of the outer planets in 1989, the Voyager spacecraft began exploring interstellar space. The Voyager mission has been managed by NASA's Office of Space Science and the Jet Propulsion Laboratory. *Image Credit*: NASA
Neptune - dark oval
PIA01990
Sol (our sun)
Imaging Science Subsystem - …
Title Neptune - dark oval
Original Caption Released with Image The large, dark oval spot in Neptune's atmosphere is just coming into view in this picture returned from the Voyager 2 spacecraft on June 30, 1989. The spacecraft was about 83 million kilometers (51.5 million miles) from Neptune. Voyager scientists are interested in the dark oval cloud system, a very large system similar to Jupiter's Great Red Spot. Contrast of the features in Neptune's atmosphere is similar to that obtained at Saturn at about this same distance and lighting, whereas the features are similar to those seen at Jupiter. The Jet Propulsion Laboratory manages the Voyager Project for NASA's Office of Space Science and Applications.
Voyager Tour Montage
Title Voyager Tour Montage
Full Description This montage of images of the planets visited by Voyager 2 was prepared from an assemblage of images taken by the Voyager 2 spacecraft. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California.
Date 08/01/1989
NASA Center Jet Propulsion Laboratory
Description Here on the Gallery page you can find the very latest images, videos and products from the Cassini-Huygens mission to Saturn, including the spectacular launch, spacecraft assembly and the exciting trip to Saturn.
Full Description The solar system's largest moon, Ganymede, is captured here alongside the planet Jupiter in a color picture taken by NASA's Cassini spacecraft on Dec. 3, 2000. Ganymede is larger than the planets Mercury and Pluto and Saturn's largest moon, Titan. Both Ganymede and Titan have greater surface area than the entire Eurasian continent on our planet. Cassini was 26.5 million kilometers (16.5 million miles) from Ganymede when this image was taken. The smallest visible features are about 160 kilometers (about 100 miles) across. The bright area near the south (bottom) of Ganymede is Osiris, a large, relatively new crater surrounded by bright icy material ejected by the impact which created it. Elsewhere, Ganymede displays dark terrains that NASA's Voyager and Galileo spacecraft have shown to be old and heavily cratered. The brighter terrains are younger and laced by grooves. Various kinds of grooved terrains have been seen on many icy moons in the solar system. These are believed to be the surface expressions of warm, pristine, water-rich materials that moved to the surface and froze. Ganymede has proven to be a fascinating world, the only moon known to have a magnetosphere, or magnetic environment, produced by a convecting metal core. The interaction of Ganymede's and Jupiter's magnetospheres may produce dazzling variations in the auroral glows in Ganymede's tenuous atmosphere of oxygen. Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C. Credit: NASA/JPL/University of Arizona For higher resolution, click here.
Terrestrial Planet Interiors
title Terrestrial Planet Interiors
description *Mercury* Mercury has an average density of 5430 kilograms per cubic meter, which is second only to Earth among all the planets. It is estimated that the planet Mercury, like Earth, has a ferrous core with a size equivalent to two-thirds to three-fourths that of the planet's overall radius. The core is believed to be composed of an iron-nickel alloy covered by a mantle and surface crust. *Venus* It is believed that the composition of the planet Venus is similar to that of Earth. The planet crust extends to around 10-30 kilometers below the surface, under which the mantle reaches to a depth of some 3000 kilometers. The planet core comprises a liquid iron-nickel alloy. Average planet density is 5240 kilograms per cubic meter. *Earth* The Earth comprises three separate layers: a crust, a mantle, and a core (in descending order from the surface). The crust thickness averages 30 kilometers for land masses and 5 kilometers for seabeds. The mantle extends from just below the crust to some 2900 kilometers deep. The core below the mantle begins at a depth of around 5100 kilometers, and comprises an outer core (liquid iron-nickel alloy) and inner core (solid iron-nickel alloy). The crust is composed mainly of granite in the case of land masses and basalt in the case of seabeds. The mantle is composed primarily of peridotite and high-pressure minerals. Average planet density is 5520 kilograms per cubic meter. *Mars* Mars is roughly one-half the diameter of Earth. Due to its small size, it is believed that the martian center has cooled. Geological structure is mainly rock and metal. The mantle below the crust comprises iron-oxide-rich silicate. The core is made up of an iron-nickel alloy and iron sulfide. Average planet density is 3930 kilograms per cubic meter. *Pluto* The structure of Pluto is not very well understood at present. Nevertheless, spectroscopic observation from Earth in the 1970s has revealed that the planet surface is covered with methane ice. Surface temperature is -230?C (-382?F), and the frozen methane exhibits a bright coloration. However, with the exception of the polar caps, the frozen methane surface is seen to change to a dark red when eclipsed by its moon Charon. Average planet density is 2060 kilograms per cubic meter. The low average density requires that the planet must be a mix of ice and rock. *Image Credit*: Lunar and Planetary Institute
Ganymede and Jupiter
PIA02862
Sol (our sun)
Imaging Science Subsystem
Title Ganymede and Jupiter
Original Caption Released with Image The solar system's largest moon, Ganymede, is captured here alongside the planet Jupiter in a color picture taken by NASA's Cassini spacecraft on Dec. 3, 2000. Ganymede is larger than the planets Mercury and Pluto and Saturn's largest moon, Titan. Both Ganymede and Titan have greater surface area than the entire Eurasian continent on our planet. Cassini was 26.5 million kilometers (16.5 million miles) from Ganymede when this image was taken. The smallest visible features are about 160 kilometers (about 100 miles) across. The bright area near the south (bottom) of Ganymede is Osiris, a large, relatively new crater surrounded by bright icy material ejected by the impact, which created it. Elsewhere, Ganymede displays dark terrains that NASA's Voyager and Galileo spacecraft have shown to be old and heavily cratered. The brighter terrains are younger and laced by grooves. Various kinds of grooved terrains have been seen on many icy moons in the solar system. These are believed to be the surface expressions of warm, pristine, water-rich materials that moved to the surface and froze. Ganymede has proven to be a fascinating world, the only moon known to have a magnetosphere, or magnetic environment, produced by a convecting metal core. The interaction of Ganymede's and Jupiter's magnetospheres may produce dazzling variations in the auroral glows in Ganymede's tenuous atmosphere of oxygen. Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.
Rounding the Corner
Description Rounding the Corner
Full Description + View Movie A movie sequence of Saturn's G ring over a full orbital revolution captures its single bright arc on the ring's inner edge. The movie is composed of 70 individual narrow-angle camera images taken during a period of just over 20 hours while Cassini stared at the ring. The orbital period for particles in the center of the G ring is about 19.6 hours. At the beginning of the sequence, the ring arc, a site of concentrated ring particles, is seen rounding the ring edge. The arc orbits at a distance of 167,496 kilometers (104,080 miles). It is about 250 kilometers (155 miles) wide in radius and subtends less than 60 degrees of orbital longitude. The classical position of the G ring is about 172,600 kilometers (107,250 miles) from Saturn, and the arc blends smoothly into this region. Scientists suspect that bodies trapped in this remarkably bright feature may be the source of the G ring material, driven outward from the arc by electromagnetic forces in the Saturn system. The arc itself is likely held in place by gravitational resonances with Mimas of the type that anchor the famed arcs in Neptune's rings. There is an obvious narrow dark gap in the G ring beyond the arc. This feature is close to yet another resonance with Mimas, but no arcs are present at this locale. This view looks toward the unlit side of the rings from about 10 degrees above the ringplane. Imaging artifacts jitter within the scene, a result of the high phase angle and faintness of the G ring. Stars slide across the background from upper left to lower right. The images in this movie were taken on Sept. 19 and 20 at a distance of approximately 2.1 to 2.2 million kilometers (1.3 to 1.4 million miles) from Saturn and at a Sun-G ring-spacecraft, or phase, angle that ranged from 167 to 164 degrees. Image scale is about 13 kilometers (8 miles) per pixel in the radial (outward from Saturn) direction. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org . Credit: NASA/JPL/Space Science Institute
Date October 11, 2006
Description Here on the Gallery page you can find the very latest images, videos and products from the Cassini-Huygens mission to Saturn, including the spectacular launch, spacecraft assembly and the exciting trip to Saturn.
Full Description Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Cassini mission for NASA's Office of Space Science, Washington, D.C. Credit: NASA/JPL/University of Arizona (PIA02826) For higher resolution, click here., These two images, taken by NASA's Cassini spacecraft, show Jupiter in a near-infrared wavelength, and catch Europa, one of Jupiter's largest moons, at different phases. Cassini's narrow-angle camera took both images, the upper one from a distance of 69.9 million kilometers (43.4 million miles) on Oct. 17, 2000, and the lower one from a distance of 65.1 million kilometers (40.4 million miles) on Oct. 22, 2000. Both were taken at a wavelength of 727 nanometers, which is in the near-infrared region of the electromagnetic spectrum. The camera's 727-nanometer filter accepts only a narrow spectral range centered on a relatively strong absorption feature due to methane gas. In this spectral region, the amount of light reflected by Jupiter's clouds is only half that reflected in a nearby spectral region outside the methane band. The features that are brightest in these images are the highest and thickest clouds, such as the Great Red Spot and the band of clouds girding the equator, as these scatter sunlight back to space before it has a chance to be absorbed by the methane gas in the atmosphere. This stratigraphic effect can be seen even more prominently in an image released on Oct. 23, 2000, taken in the stronger methane band at 889 nanometers, in which the only bright features are the highest hazes over the equator, the poles and the Great Red Spot. By comparing images taken in the 727 nanometer filter with others taken at 889 nanometers and at a weaker methane band at 619 nanometers, researchers will probe the heights and thickness of clouds in Jupiter's atmosphere. Europa, a satellite of Jupiter about the size of Earth's Moon, is visible to the left of Jupiter in the upper image, and in front of the planet in the lower image. Another of Jupiter's Galilean satellites, Ganymede, which is larger than the planet Mercury, is to the right in the upper image, with brightness variations visible across its surface. In the upper image, Europa is caught entering Jupiter's shadow, and hence appears as a bright crescent, in the lower image, it is seen about one-and-a-half orbits later, in transit across the face of the planet. Because there is neither methane nor any strong absorber in this spectral region on the surface of Europa, it appears strikingly white and bright compared to Jupiter. Imaging observations of the moons Europa, Io and Ganymede entering and passing through Jupiter's shadow are planned for the two-week period surrounding Cassini's closest approach on Dec. 30, 2000. The purpose of these eclipse observations is to detect and measure the variability of emissions that arise from the interaction of the satellites' tenuous atmospheres with the charged particles trapped in Jupiter's magnetic field. At the times these images were taken, Cassini was about 3.3 degrees above Jupiter's equatorial plane, and the Sun-Jupiter-spacecraft angle was about 20 degrees. Cassini is a cooperative project of NASA, the European Space Agency and the Italian
Rounding the Corner
Description Here on the Gallery page you can find the very latest images, videos and products from the Cassini-Huygens mission to Saturn, including the spectacular launch, spacecraft assembly and the exciting trip to Saturn.
Full Description A movie sequence of Saturn's G ring over a full orbital revolution captures its single bright arc on the ring's inner edge. The movie is composed of 70 individual narrow-angle camera images taken during a period of just over 20 hours while Cassini stared at the ring. The orbital period for particles in the center of the G ring is about 19.6 hours. At the beginning of the sequence, the ring arc, a site of concentrated ring particles, is seen rounding the ring edge. The arc orbits at a distance of 167,496 kilometers (104,080 miles). It is about 250 kilometers (155 miles) wide in radius and subtends less than 60 degrees of orbital longitude. The classical position of the G ring is about 172,600 kilometers (107,250 miles) from Saturn, and the arc blends smoothly into this region. Scientists suspect that bodies trapped in this remarkably bright feature may be the source of the G ring material, driven outward from the arc by electromagnetic forces in the Saturn system. The arc itself is likely held in place by gravitational resonances with Mimas of the type that anchor the famed arcs in Neptune's rings. There is an obvious narrow dark gap in the G ring beyond the arc. This feature is close to yet another resonance with Mimas, but no arcs are present at this locale. This view looks toward the unlit side of the rings from about 10 degrees above the ringplane. Imaging artifacts jitter within the scene, a result of the high phase angle and faintness of the G ring. Stars slide across the background from upper left to lower right. The images in this movie were taken on Sept. 19 and 20 at a distance of approximately 2.1 to 2.2 million kilometers (1.3 to 1.4 million miles) from Saturn and at a Sun-G ring-spacecraft, or phase, angle that ranged from 167 to 164 degrees. Image scale is about 13 kilometers (8 miles) per pixel in the radial (outward from Saturn) direction. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov. The Cassini imaging team homepage is at http://ciclops.org. Credit: NASA/JPL/Space Science Institute
Neptune's rings
Title Neptune's rings
Description This wide-angle Voyager 2 image, taken through the camera's clear filter, is the first to show Neptune's rings in detail. The two main rings, about 53,000 km (33,000 miles) and 63,000 km (39,000 miles) from Neptune, are 5 to 10 times brighter than in earlier images. The difference is due to lighting and viewing geometry. In approach images, the rings were seen in light scattered backward toward the spacecraft at a 15-degree phase angle. However, this image was taken at a 135-degree phase angle as Voyager left the planet. That geometry is ideal for detecting microscopic particles that forward-scatter light preferentially. The fact that Neptune's rings are so much brighter at that angle means the particle-size distribution is quite different from most of Uranus' and Saturn's rings, which contain fewer dust-size grains. However, a few components of the Saturnian and Uranian ring systems exhibit forward-scattering behavior: The F ring and the Encke Gap ringlet at Saturn, and 1986U1R at Uranus. They are also narrow, clumpy ringlets with kinks, and are associated with nearby moonlets too small to detect directly. In this image, the main clumpy arc, composed of three features each about 6 to 8 degrees long, is clearly seen. This image was obtained when Voyager was 1.1 million km (683,000 miles) from Neptune. Exposure time was 111seconds. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Date 08.26.1989
Saturn's Blue Cranium
Description Saturn's Blue Cranium
Full Description Saturn's northern hemisphere is presently a serene blue, more befitting of Uranus or Neptune, as seen in this natural color image from Cassini. Light rays here travel a much longer path through the relatively cloud-free upper atmosphere. Along this path, shorter wavelength blue light rays are scattered effectively by gases in the atmosphere, and it is this scattered light that gives the region its blue appearance. Why the upper atmosphere in the northern hemisphere is so cloud-free is not known, but may be related to colder temperatures brought on by the ring shadows cast there. Shadows cast by the rings surround the pole, looking almost like dark atmospheric bands. The ring shadows at higher latitudes correspond to locations on the ringplane that are farther from the planet -- in other words, the northernmost ring shadow in this view is made by the outer edge of the A ring. Spots of bright clouds also are visible throughout the region. This view is similar to an infrared image obtained by Cassini at nearly the same time (see http://photojournal.jpl.nasa.gov/catalog/PIA06567). The infrared view shows a great deal more detail in the planet's atmosphere, however. Images obtained using red, green and blue spectral filters were combined to create this color view. The images were taken with the Cassini spacecraft wide angle camera on Dec. 14, 2004, at a distance of 719,200 kilometers (446,900 miles) from Saturn. The image scale is about 39 kilometers (24 miles) per pixel. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo. For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . For images visit the Cassini imaging team home page http://ciclops.org . *Credit:* NASA/JPL/Space Science Institute
Date February 8, 2005
Pale Blue Orb (1)
Description Pale Blue Orb
Full Description Not since NASA's Voyager 1 spacecraft saw our home as a pale blue dot from beyond the orbit of Neptune has Earth been imaged in color from the outer solar system. Now, Cassini casts powerful eyes on our home planet, and captures Earth, a pale blue orb -- and a faint suggestion of our moon -- among the glories of the Saturn system. Earth is captured here in a natural color portrait made possible by the passing of Saturn directly in front of the sun from Cassini's point of view. At the distance of Saturn's orbit, Earth is too narrowly separated from the sun for the spacecraft to safely point its cameras and other instruments toward its birthplace without protection from the sun's glare. The Earth-and-moon system is visible as a bright blue point on the right side of the image above center. Here, Cassini is looking down on the Atlantic Ocean and the western coast of north Africa. The phase angle of Earth, seen from Cassini is about 30 degrees. A magnified view of the image taken through the clear filter (monochrome) shows the moon as a dim protrusion to the upper left of Earth. Seen from the outer solar system through Cassini's cameras, the entire expanse of direct human experience, so far, is nothing more than a few pixels across. Earth no longer holds the distinction of being our solar system's only "water world," as several other bodies suggest the possibility that they too harbor liquid water beneath their surfaces. The Saturnian moon, Enceladus, is among them, and is also captured on the left in this image (see inset), with its plume of water ice particles and swathed in the blue E ring which it creates. Delicate fingers of material extend from the active moon into the E ring. See Ghostly Fingers of Enceladus, for a more detailed view of these newly-revealed features. The narrow tenuous G ring and the main rings are seen at the right. The view looks down from about 15 degrees above the un-illuminated side of the rings. Images taken using red, green and blue spectral filters were combined to create this view. The image was taken by the Cassini spacecraft wide-angle camera on Sept. 15, 2006, at a distance of approximately 2.1 million kilometers (1.3 million miles) from Saturn and at a sun-Saturn-spacecraft angle of almost 179 degrees. Image scale is 129 kilometers (80 miles) per pixel. At this time, Cassini was nearly 1.5 billion kilometers (930 million miles) from Earth. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov ., The Cassini imaging team homepage is at http://ciclops.org . Credit: NASA/JPL/Space Science Institute
Date September 19, 2006
Frame-Filling Rhea
Description Frame-Filling Rhea
Full Description Saturn's moon Rhea is an alien ice world, but in this frame-filling view it is vaguely familiar. Here, Rhea's cratered surface looks in some ways similar to our own Moon, or the planet Mercury. But make no mistake - Rhea's icy exterior would quickly melt if this moon were brought as close to the Sun as Mercury. Rhea is 1,528 kilometers (949 miles) across. Instead, Rhea preserves a record of impacts at its post in the outer solar system. The large impact crater at center left (near the terminator or boundary between day and night), called Izanagi, is just one of the numerous large impact basins on Rhea. This view shows principally Rhea's southern polar region, centered on 58 degrees South, 265 degrees West. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Aug. 1, 2005, at a distance of approximately 255,000 kilometers (158,000 miles) from Rhea and at a Sun-Rhea-spacecraft, or phase, angle of 62 degrees. Image scale is 2 kilometers (1.2 miles) per pixel. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org . Credit: NASA/JPL/Space Science Institute
Date September 9, 2005
The Plane of the Ecliptic
title The Plane of the Ecliptic
description The Plane of the Ecliptic is illustrated in this Clementine star tracker camera image which reveals (from right to left) the Moon lit by Earthshine, the Sun's corona rising over the Moon's dark limb, and the planets Saturn, Mars, and Mercury. The ecliptic plane is defined as the imaginary plane containing the Earth's orbit around the Sun. In the course of a year, the Sun's apparent path through the sky lies in this plane. The planetary bodies of our solar system all tend to lie near this plane, since they were formed from the Sun's spinning, flattened, proto-planetary disk. The snapshot above nicely captures a momentary line-up looking out along this fundamental plane of our solar system. *Image Credit*: NASA
Terrestrial Planet Sizes
title Terrestrial Planet Sizes
description The terrestrial planets are the four innermost planets in the solar system, Mercury, Venus, Earth, and Mars. They are called terrestrial because they have a compact, rocky surface like the Earth's. The planets Venus, Earth, and Mars have significant atmospheres, while Mercury has almost none. This diagram shows the approximate relative sizes of the terrestrial planets. Distances are not to scale. *Image Credit*: Lunar and Planetary Institute
Mercury's Caloris Basin
title Mercury's Caloris Basin
date 03.28.1974
description Mercury: The desert closest to the sun. Computer Photomosaic of the Caloris Basin The largest basin on Mercury (1300 km or 800 miles across) was named Caloris (Greek for "hot") because it is one of the two areas on the planet that face the Sun at perihelion. The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The Mariner 10 spacecraft imaged the region during its initial flyby of the planet. The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission. The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C. *Image Credit*: NASA
Intercrater Plains and Heavi …
PIA02947
Sol (our sun)
Imaging Science Subsystem - …
Title Intercrater Plains and Heavily Cratered Terrain
Original Caption Released with Image Intercrater plains and heavily cratered terrain typical of much of Mercury outside the area affected by the formation of the Caloris basin are shown in this image (FDS 166738) taken during the spacecraft's second encounter with Mercury. Abundant shallow elongate craters and crater chains are present on the intercrater plains. North is to the top of this image, centered at 56 degrees S, 128 degrees W and 400 kilometers across. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Jupiter Ahoy!
title Jupiter Ahoy!
date 09.04.2006
description The Long Range Reconnaissance Imager (LORRI) on NASA's New Horizons spacecraft took this photo of Jupiter on Sept. 4, 2006, from a distance of 291 million kilometers (nearly 181 million miles) away. Visible in the image are belts, zones and large storms in Jupiter's atmosphere, as well as the Jovian moons Europa (at left) and Io and the shadows they cast on Jupiter. LORRI snapped this image during a test sequence to help prepare for the Jupiter encounter observations. It was taken close to solar opposition, meaning that the Sun was almost directly behind the camera when it spied Jupiter. This makes Jupiter appear about 40 times brighter than Pluto will be for LORRI's primary observations when New Horizons encounters the Pluto system in 2015. To avoid saturation, the camera's exposure time was kept to 6 milliseconds. This image was, in part, a test to see how well LORRI would operate with such a short exposure time. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Mercury's South Pole
title Mercury's South Pole
date 09.21.1974
description Mercury's south pole was photographed by one of Mariner 10's TV cameras as the spacecraft made its second close flyby of the planet September 21. The pole is located inside the large crater (180 kilometers, 110 miles) on Mercury's limb (lower center). The crater floor is shadowed and its far rim, illuminated by the sun, appears to de disconnected from the edge of the planet. Just above and to the right of the South Pole is a double ring basin about 100 kilometers (125 miles) in diameter. A bright ray system, splashed out of a 50 kilometer (30 mile) crater is seen at upper right. The stripe across the top is an artifact introduced during computer processing. The picture (FDS 166902) was taken from a distance of 85,800 kilometers (53,200 miles) less than two hours after Mariner 10 reached its closest point to the planet. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. *Image Credit*: NASA/JPL/Northwestern University
Lobate Scarps within the Hum …
PIA02426
Sol (our sun)
Imaging Science Subsystem - …
Title Lobate Scarps within the Hummocky Plains East of Caloris Basin
Original Caption Released with Image Plains material east of the Caloris basin is shown this image (FDS 191) acquired during the spacecraft's first encounter with Mercury. Several west-facing lobate scarps occur in the hummocky plains interpreted as Caloris ejecta and may be short flow fronts of partially melted ejecta which flowed back toward the basin after deposition. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Large Mercurian Crater
PIA02424
Sol (our sun)
Imaging Science Subsystem - …
Title Large Mercurian Crater
Original Caption Released with Image This image (FDS 166), acquired during the spacecraft's first encounter with Mercury, features a 140 kilometer diameter crater and it's surrounding zone of secondary craters. The narrow width of the rim facies, the prominent subradial secondary crater chains, and grooves are representative of the larger mercurian craters. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Antoniadi Ridge
PIA02430
Sol (our sun)
Imaging Science Subsystem - …
Title Antoniadi Ridge
Original Caption Released with Image Antoniadi Ridge, over 450 kilometers long, runs along the right side of this image. The ridge transects a large crater (80-km in diameter) and in turn appears to be interrupted by an irregular rimless depression on the floor of the crater. This ridge also crosses smooth plains to the north and intercrater plains to the south of the large crater. This image (FDS 27325) was acquired during the spacecraft's first encounter with Mercury. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Mercury: Photomosaic of the …
PIA02236
Sol (our sun)
Imaging Science Subsystem - …
Title Mercury: Photomosaic of the Kuiper Quadrangle H-6
Original Caption Released with Image The Kuiper Quadrangle was named in memory of Dr. Gerard Kuiper, a Mariner 10 Venus/Mercury imaging team member and well-known astronomer, who passed away several months before the spacecraft's arrival at Mercury. The Kuiper crater, located left of center, is the brightest and perhaps youngest crater is 60 km in diameter located at -11 degrees latitude and 31 degrees longitude. The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The images used to construct the Kuiper Quadrangle were taken during Mariner's first and third flybys of Mercury. The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission. The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C.
Old Basin Filled by Smooth P …
PIA02948
Sol (our sun)
Imaging Science Subsystem - …
Title Old Basin Filled by Smooth Plains
Original Caption Released with Image Old basin, 190 km in diameter, filled by smooth plains at 43 degrees S, 55 degrees W. The basin's hummocky rim is partly degraded and cratered by later events. Mariner 10 frame 166607. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Lineated Terrain
PIA02428
Sol (our sun)
Imaging Science Subsystem - …
Title Lineated Terrain
Original Caption Released with Image Lineated terrain not clearly related to any crater or basin. Widest valleys are 10 km across. Area centered at 8 degrees S, 148 degrees W. This image (FDS 246) was taken during the spacecraft's first encounter with Mercury. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Terraced Craters
PIA02420
Sol (our sun)
Imaging Science Subsystem - …
Title Terraced Craters
Original Caption Released with Image This crater (98 km diameter) illustrates the narrow hummocky rim facies, radial ridges, and surrounding extensive field of secondary craters. The well-developed interior terraces and central peaks are typical for mercurian craters in this size range. Note that the smaller craters in the foreground (25-km diameter) also are terraced. This image(FDS 80)was taken during the spacecraft's first encounter with Mercury. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Interior Peaks and Hilly Flo …
PIA02419
Sol (our sun)
Imaging Science Subsystem - …
Title Interior Peaks and Hilly Floored Crater
Original Caption Released with Image This crater (74 km diameter) just north of the Caloris Planitia displays interior and central peaks rising up from a hilly floor. The continuous ejecta deposits and secondary crater field are well defined. This image(FDS 79) was taken during the spacecraft's first encounter with Mercury. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Crater Chain Groves Inside L …
PIA02423
Sol (our sun)
Imaging Science Subsystem - …
Title Crater Chain Groves Inside Larger Craters
Original Caption Released with Image The craters in this image (128 km diameter and 195 km diameter) have interior rings of mountains and ejecta deposits which are scarred by deep secondary crater chain groves. This image (FDS 150)was taken during the spacecraft's first encounter with Mercury. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Northeastern Quadrant of the …
PIA02427
Sol (our sun)
Imaging Science Subsystem - …
Title Northeastern Quadrant of the Caloris Basin
Original Caption Released with Image This image of the northeastern quadrant of the Caloris basin shows the smooth hills and domes between the inner and outer scarps and the well-developed radial system east of the outer scarp. This image (FDS 193) was taken during the spacecraft's first encounter with Mercury. The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Prominent Rayed Craters
PIA02429
Sol (our sun)
Imaging Science Subsystem - …
Title Prominent Rayed Craters
Original Caption Released with Image These two prominent rayed craters are located at 40 degrees N, 124 degrees W. Bright halos extend as far as 2 crater diameters beyond crater rims. Individual rays extend from halo. Bright streak extending from middle top to lower is unrelated to the two craters. Craters are 40 km in diameter. This image (FDS 275) was taken during the spacecraft's first encounter with Mercury The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon. Image Credit: NASA/JPL/Northwestern University
Mariner Diagram
title Mariner Diagram
date 01.01.1965
description A diagram of the Mariner series of spacecraft and launch vehicle. Mariner spacecraft explored Mercury, Venus and Mars. *Image Credit*: NASA
1 2 3 4178 179
1-50 of 8,930