Search Results: All Fields similar to 'Explorer'

Printer Friendly
1 2 3 4 5 6 7
101-150 of 324
     
     
Galaxy UGC10445
PIA04623
GALEX Telescope
Title Galaxy UGC10445
Original Caption Released with Image This ultraviolet color image of the galaxy UGC10445 was taken by NASA's Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy NGC5962
PIA04635
GALEX Telescope
Title Galaxy NGC5962
Original Caption Released with Image NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy Messier 51
PIA04628
GALEX Telescope
Title Galaxy Messier 51
Original Caption Released with Image NASA's Galaxy Evolution Explorer took this image of the spiral galaxy Messier 51 on June 19 and 20, 2003. Messier 51 is located 27 million light-years from Earth. Due to a lack of star formation, the companion galaxy in the top of the picture is barely visible as a near ultraviolet object. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy Messier 83
PIA04629
GALEX Telescope
Title Galaxy Messier 83
Original Caption Released with Image This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Groth Deep Image
PIA04625
GALEX Telescope
Title Groth Deep Image
Original Caption Released with Image This ultraviolet color blowup of the Groth Deep Image was taken by NASA's Galaxy Evolution Explorer on June 22 and June 23, 2003. Many hundreds of galaxies are detected in this portion of the image. NASA astronomers believe the faint red galaxies are 6 billion light years away. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Messier 101
PIA04631
GALEX Telescope
Title Messier 101
Original Caption Released with Image NASA's Galaxy Evolution Explorer took this near ultraviolet image of Messier 101 on June 20, 2003. Messier 101 is a large spiral galaxy located 20 million light-years from Earth. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Groth Deep Locations Image
PIA04626
GALEX Telescope
Title Groth Deep Locations Image
Original Caption Released with Image NASA's Galaxy Evolution Explorer photographed this ultraviolet color blowup of the Groth Deep Image on June 22 and June 23, 2003. Hundreds of galaxies are detected in this portion of the image, and the faint red galaxies are believed to be 6 billion light years away. The white boxes show the location of these distant galaxies, of which more than a 100 can be detected in this image. NASA astronomers expect to detect 10,000 such galaxies after extrapolating to the full image at a deeper exposure level. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy M101
PIA04630
GALEX Telescope
Title Galaxy M101
Original Caption Released with Image This three-color image of galaxy M101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. The far ultraviolet emissions are shown in blue, the near ultraviolet emissions are green, and the red emissions, which were taken from NASA's Digital Sky Survey, represent visible light. This image combines short, medium, and long "exposure" pictures to best display the evolution of star formation in a spiral galaxy. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy NGC5398
PIA04633
GALEX Telescope
Title Galaxy NGC5398
Original Caption Released with Image This is an ultraviolet color image of the galaxy NGC5398 taken by NASA's Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy NGC5474
PIA04634
GALEX Telescope
Title Galaxy NGC5474
Original Caption Released with Image NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Messier 101 Single Orbit Exp …
PIA04632
GALEX Telescope
Title Messier 101 Single Orbit Exposure
Original Caption Released with Image This single orbit exposure, ultraviolet color image of Messier 101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. Messier 101 is a large spiral galaxy located 20 million light-years from Earth. This image is a short and medium "exposure" picture of the evolution of star formation in a spiral galaxy. The far ultraviolet emission detects the younger stars as concentrated in tight spiral arms, while the near ultraviolet emission, which traces stars living for more than 100 million years, displays the movement of the spiral pattern over a 100 million year period. The red stars in the foreground of the image are Milky Way stars. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Deep Imaging Survey
PIA04627
GALEX Telescope
Title Deep Imaging Survey
Original Caption Released with Image This is the first Deep Imaging Survey image taken by NASA's Galaxy Evolution Explorer. On June 22 and 23, 2003, the spacecraft obtained this near ultraviolet image of the Groth region by adding multiple orbits for a total exposure time of 14,000 seconds. Tens of thousands of objects can be identified in this picture. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
M81 Galaxy is Pretty in Pink
PIA09579
GALEX Telescope, Infrared Ar …
Title M81 Galaxy is Pretty in Pink
Original Caption Released with Image The perfectly picturesque spiral galaxy known as Messier 81, or M81, looks sharp in this new composite from NASA's Spitzer and Hubble space telescopes and NASA's Galaxy Evolution Explorer. M81 is a "grand design" spiral galaxy, which means its elegant arms curl all the way down into its center. It is located about 12 million light-years away in the Ursa Major constellation and is one of the brightest galaxies that can be seen from Earth through telescopes. The colors in this picture represent a trio of light wavelengths: blue is ultraviolet light captured by the Galaxy Evolution Explorer, yellowish white is visible light seen by Hubble, and red is infrared light detected by Spitzer. The blue areas show the hottest, youngest stars, while the reddish-pink denotes lanes of dust that line the spiral arms. The orange center is made up of older stars.
Andromeda Galaxy
PIA04921
GALEX Telescope
Title Andromeda Galaxy
Original Caption Released with Image This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white "bulge" of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise "red", old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.
Andromeda Galaxy
PIA04921
GALEX Telescope
Title Andromeda Galaxy
Original Caption Released with Image This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white "bulge" of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise "red", old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.
Andromeda Galaxy
PIA04921
GALEX Telescope
Title Andromeda Galaxy
Original Caption Released with Image This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white "bulge" of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise "red", old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.
Globular Cluster Messier 2 i …
PIA04926
GALEX Telescope
Title Globular Cluster Messier 2 in Aquarius
Original Caption Released with Image This image of the Globular cluster Messier 2 (M2) was taken by Galaxy Evolution Explorer on August 20, 2003. This image is a small section of a single All Sky Imaging Survey exposure of only 129 seconds in the constellation Aquarius. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors (colored red). Globular clusters are gravitationally bound systems of hundreds of thousands of stars that orbit in the halos of galaxies. The globular clusters in out Milky Way galaxy contain some of the oldest stars known. M2 lies 33,000 light years from our Sun with stars distributed in a spherical system with a radius of approximately 100 light years.
Big Black Holes Mean Bad New …
PIA08697
Title Big Black Holes Mean Bad News for Stars (diagram)
Original Caption Released with Image Poster Version Suppression of Star Formation from Supermassive Black Holes This diagram illustrates research from NASA's Galaxy Evolution Explorer showing that black holes -- once they reach a critical size -- can put the brakes on new star formation in elliptical galaxies. In this graph, galaxies and their supermassive black holes are indicated by the drawings (the black circle at the center of each galaxy represents the black hole). The relative masses of the galaxies and their black holes are reflected in the sizes of the drawings. Blue indicates that the galaxy has new stars, while red means the galaxy does not have any detectable new stars. The Galaxy Evolution Explorer observed the following trend: the biggest galaxies and black holes (shown in upper right corner) are more likely to have no observable star formation (red) than the smaller galaxies with smaller black holes. This is evidence that black holes can create environments unsuitable for stellar birth. The white line in the diagram illustrates that, for any galaxy no matter what the mass, its black hole must reach a critical size before it can shut down star formation.
Big Black Holes Mean Bad New …
PIA08697
Title Big Black Holes Mean Bad News for Stars (diagram)
Original Caption Released with Image Poster Version Suppression of Star Formation from Supermassive Black Holes This diagram illustrates research from NASA's Galaxy Evolution Explorer showing that black holes -- once they reach a critical size -- can put the brakes on new star formation in elliptical galaxies. In this graph, galaxies and their supermassive black holes are indicated by the drawings (the black circle at the center of each galaxy represents the black hole). The relative masses of the galaxies and their black holes are reflected in the sizes of the drawings. Blue indicates that the galaxy has new stars, while red means the galaxy does not have any detectable new stars. The Galaxy Evolution Explorer observed the following trend: the biggest galaxies and black holes (shown in upper right corner) are more likely to have no observable star formation (red) than the smaller galaxies with smaller black holes. This is evidence that black holes can create environments unsuitable for stellar birth. The white line in the diagram illustrates that, for any galaxy no matter what the mass, its black hole must reach a critical size before it can shut down star formation.
Ellen Weaver, Biologist
Title Ellen Weaver, Biologist
Full Description Ellen Weaver, an associate professor of biology from California State University is shown developing instrumentation to be used in satellites for ocean monitoring. In the early 1970s, NASA researchers and ocean explorer Jacques Cousteau formed a team to study productivity of the sea. The team devised a sensor system to monitor ocean temperatures and chlorophyll levels by aircraft. This sensor was used in the satellite communication and weather equipment provided by NASA to assist in the accuracy of satellite observation.
Date 2/8/1973
NASA Center Headquarters
Project Red Socks
title Project Red Socks
date 10.01.1957
description Project RED SOCKS was to be "the world's first useful moon rocket," proposed by the Jet Propulsion Laboratory/California Institute of Technology in October 1957. These artist's renditions show the configuration of motors and a diagram of the moon orbit. RED SOCKS was to respond to the Sputnik launch challenge with a significant technological advance over the Soviet Union instead of merely matching them with another earth-orbiting satellite. The objectives of the project were to "1) get photos, 2) refine space guidance techniques, and 3) impress the world" with a series of nine rocket flights to the moon. The second of the nine flights was to take pictures of the back of the moon. The necessary technology had already been developed for earlier projects, such as the Re-entry Test Vehicle and the Microlock radio ground tracking system. Project RED SOCKS received no support in Washington. In December 1957, JPL and the Army Ballistic Missile Agency (ABMA) were instead asked to orbit an Earth satellite. Explorer 1 was launched 81 days later, on January 29, 1958. A modified RED SOCKS plan was carried out in the Pioneer 4 project in March 1959. *Image Credit*: NASA Jet Propulsion Laboratory
5-Panel version of Chandra, …
Name 5-Panel version of Chandra, GALEX, Spitzer & Hubble Images
COBE's View of the Milky Way
Title COBE's View of the Milky Way
Full Description From its orbit around Earth, the Goddard Space Flight Center's Cosmic Background Explorer (COBE) captured this edge-on view of our Milky Way galaxy in infrared light, a form of radiation that humans cannot see but can feel in the form of heat, as part of its mission to test the "Big Bang" theory of the creation of the universe. The theory, first proposed in 1927 by Belgian cosmologist Georges Lematre, holds that the universe began as an incredibly dense "primeval atom" that exploded with tremendous force, unleashing matter and space at the speeds of light. NASA set out to prove the theory with the help of COBE. In addition to proving the Big Bang, the satellite discovered that the cosmic background radiation had indeed been produced in the Big Bang just as scientists originally speculated. The satellite's data even discovered the primordial temperature and density fluctuations that eventually gave rise to the Milky Way and other large-scale objects found in space today.
Date 01/01/1990
NASA Center Goddard Space Flight Center
SAMPEX - A Synoptic View of …
Title SAMPEX - A Synoptic View of Earth's Electron Radiation Belts: North Pole Energetic Fluxes from PET
Abstract The Solar Anomalous and Magnetospheric Particle Explorer, SAMPEX, measures fluxes of energetic particles from the sun, the Earth's magnetosphere, and cosmic ray sources over a broad range of energies. The four instruments aboard SAMPEX are the Low-Energy Ion Analyzer (LEICA), The Heavy Ion Large Telescope (HILT), The Mass Spectrometer Telescope (MAST), and the Proton-Electron Telescope (PET).
Completed 1995-01-01
Interstellar Boundry Explore …
Title Interstellar Boundry Explorer (IBEX)
Abstract These animations show IBEX and it's two imagers specialized to detect neutral atoms from the solar system's outer boundaries and galactic medium.
Completed 2007-12-10
Interstellar Boundry Explore …
Title Interstellar Boundry Explorer (IBEX)
Abstract These animations show IBEX and it's two imagers specialized to detect neutral atoms from the solar system's outer boundaries and galactic medium.
Completed 2007-12-10
SAMPEX - A Synoptic View of …
Title SAMPEX - A Synoptic View of Earth's Electron Radiation Belts: North Pole Energetic Fluxes from HILT
Abstract The Solar Anomalous and Magnetospheric Particle Explorer, SAMPEX, measures fluxes of energetic particles from the sun, the Earth's magnetosphere, and cosmic ray sources over a broad range of energies. The four instruments aboard SAMPEX are the Low-Energy Ion Analyzer (LEICA), The Heavy Ion Large Telescope (HILT), The Mass Spectrometer Telescope (MAST), and the Proton-Electron Telescope (PET).
Completed 1995-01-01
SAMPEX - A Synoptic View of …
Title SAMPEX - A Synoptic View of Earth's Electron Radiation Belts: South Pole Energetic Fluxes from PET
Abstract The Solar Anomalous and Magnetospheric Particle Explorer, SAMPEX, measures fluxes of energetic particles from the sun, the Earth's magnetosphere, and cosmic ray sources over a broad range of energies. The four instruments aboard SAMPEX are the Low-Energy Ion Analyzer (LEICA), The Heavy Ion Large Telescope (HILT), The Mass Spectrometer Telescope (MAST), and the Proton-Electron Telescope (PET).
Completed 1995-01-01
SAMPEX - A Synoptic View of …
Title SAMPEX - A Synoptic View of Earth's Electron Radiation Belts: South Pole Energetic Fluxes from HILT
Abstract The Solar Anomalous and Magnetospheric Particle Explorer, SAMPEX, measures fluxes of energetic particles from the sun, the Earth's magnetosphere, and cosmic ray sources over a broad range of energies. The four instruments aboard SAMPEX are the Low-Energy Ion Analyzer (LEICA), The Heavy Ion Large Telescope (HILT), The Mass Spectrometer Telescope (MAST), and the Proton-Electron Telescope (PET).
Completed 1995-01-01
SEDS-I: Subsatellite in moti …
Title SEDS-I: Subsatellite in motion (30 frames/second)
Completed 1994-04-01
SEDS-I: Subsatellite in moti …
Title SEDS-I: Subsatellite in motion (6 frames/second)
Completed 1994-04-01
ACD06-0113-001
Spaceward Bound Program in A …
7/5/06
Description Spaceward Bound Program in Atacama Desert, shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR
Date 7/5/06
ACD06-0113-002
Spaceward Bound Program in A …
7/5/06
Description Spaceward Bound Program in Atacama Desert, shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR
Date 7/5/06
ACD06-0113-005
Spaceward Bound Program in A …
7/5/06
Description Spaceward Bound Program in Atacama Desert, shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR
Date 7/5/06
ACD06-0113-007
Spaceward Bound Program in A …
7/5/06
Description Spaceward Bound Program in Atacama Desert, shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR
Date 7/5/06
ACD06-0113-009
SSpaceward Bound Program in …
7/5/06
Description SSpaceward Bound Program in Atacama Desert, shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR
Date 7/5/06
ACD06-0113-010
Spaceward Bound Program in A …
7/5/06
Description Spaceward Bound Program in Atacama Desert, shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR
Date 7/5/06
ACD06-0113-011
Spaceward Bound Program in A …
7/5/06
Description Spaceward Bound Program in Atacama Desert, shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR
Date 7/5/06
Galaxy Evolution Explorer Sp …
PIA09653
Far-ultraviolet Detector, Ne …
Title Galaxy Evolution Explorer Spies Band of Stars
Original Caption Released with Image The Galaxy Evolution Explorer's ultraviolet eyes have captured a globular star cluster, called NGC 362, in our own Milky Way galaxy. In this new image, the cluster appears next to stars from a more distant neighboring galaxy, known as the Small Magellanic Cloud. Globular clusters are densely packed bunches of old stars scattered in galaxies throughout the universe. NGC 362, located 30,000 light-years away, can be spotted as the dense collection of mostly yellow-tinted stars surrounding a large white-yellow spot toward the top-right of this image. The white spot is actually the core of the cluster, which is made up of stars so closely packed together that the Galaxy Evolution Explorer cannot see them individually. The light blue dots surrounding the cluster core are called extreme horizontal branch stars. These stars used to be very similar to our sun and are nearing the end of their lives. They are very hot, with temperatures reaching up to about four times that of the surface of our sun (25,000 Kelvin or 45,500 degrees Fahrenheit). A star like our sun spends most of its life fusing hydrogen atoms in its core into helium. When the star runs out of hydrogen in its core, its outer envelope will expand. The star then becomes a red giant, which burns hydrogen in a shell surrounding its inner core. Throughout its life as a red giant, the star loses a lot of mass, then begins to burn helium at its core. Some stars will have lost so much mass at the end of this process, up to 85 percent of their envelopes, that most of the envelope is gone. What is left is a very hot ultraviolet-bright core, or extreme horizontal branch star. Blue dots scattered throughout the image are hot, young stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way located approximately 200,000 light-years away. The stars in this galaxy are much brighter intrinsically than extreme horizontal branch stars, but they appear just as bright because they are farther away. The blue stars in the Small Magellanic Cloud are only about a few tens of millions of years old, much younger than the approximately 10-million-year-old stars in NGC 362. Because NGC 362 sits on the northern edge of the Small Magellanic Cloud galaxy, the blue stars are denser toward the south, or bottom, of the image. Some of the yellow spots in this image are stars in the Milky Way galaxy that are along this line of sight. Astronomers believe that some of the other spots, particularly those closer to NGC 362, might actually be a relatively ultraviolet-dim family of stars called "blue stragglers." These stars are formed from collisions or close encounters between two closely orbiting stars in a globular cluster. This image is a false-color composite, where light detected by the Galaxy Evolution Explorer's far-ultraviolet detector is colored blue, and light from the telescope's near-ultraviolet detector is red.
Older Galaxy Pair Has Surpri …
Title Older Galaxy Pair Has Surprisingly Youthful Glow
Description A pair of interacting galaxies might be experiencing the galactic equivalent of a mid-life crisis. For some reason, the pair, called Arp 82, didn't make their stars early on as is typical of most galaxies. Instead, they got a second wind later in life -- about 2 billion years ago -- and started pumping out waves of new stars as if they were young again. Arp 82 is an interacting pair of galaxies with a strong bridge and a long tail. NGC 2535 is the big galaxy and NGC 2536 is its smaller companion. The disk of the main galaxy looks like an eye, with a bright "pupil" in the center and oval-shaped "eyelids." Dramatic "beads on a string" features are visible as chains of evenly spaced star-formation complexes along the eyelids. These are presumably the result of large-scale gaseous shocks from a grazing encounter. The colors of this galaxy indicate that the observed stars are young to intermediate in age, around 2 million to 2 billion years old, much less than the age of the universe (13.7 billion years). The puzzle is: why didn't Arp 82 form many stars earlier, like most galaxies of that mass range? Scientifically, it is an oddball and provides a relatively nearby lab for studying the age of intermediate-mass galaxies. This picture is a composite captured by Spitzer's infrared array camera with light at wavelength 8 microns shown in red, NASA's Galaxy Evolution Explorer combined 1530 and 2310 Angstroms shown in blue, and the Southeastern Association for Research in Astronomy Observatory light at 6940 Angstroms shown in green.
Artist's concept of Galaxy E …
Title Artist's concept of Galaxy Evolution Explorer
Description Artist's concept of Galaxy Evolution Explorer
Date 12.21.2002
A New Class of X-ray Star?
Title A New Class of X-ray Star?
General Information What is an American Astronomical Society Meeting release? A major news announcement issued at an American Astronomical Society meeting, the premier astronomy conference. Teaming up space telescopes to make simultaneous ultraviolet and X-ray observations, astronomers may have solved a 20-year-old mystery and possibly discovered a new class of X-ray star. The unlikely suspect is a second-magnitude star 600 light-years from Earth in the constellation Cassiopeia. It turns out that the mild-mannered-looking star is ejecting 100-million-degree flares into space ? 10 times hotter than typical flares ejected from our Sun. The findings are based on observations by the Hubble telescope and the Rossi X-Ray Timing Explorer. Read more: * Release Text [ http://hubblesite.org/newscenter/archive/releases/1998/07/text/ ]
Large Face on Spiral Galaxy …
PIA07904
GALEX Telescope
Title Large Face on Spiral Galaxy NGC 3344
Original Caption Released with Image Ultraviolet image of the large face on spiral galaxy NGC 3344. The inner spiral arms are wrapped so tightly that they are difficult to distinguish.
Barred Spiral Galaxy NGC 136 …
PIA07901
GALEX Telescope
Title Barred Spiral Galaxy NGC 1365
Original Caption Released with Image Ultraviolet image of the barred spiral galaxy NGC 1365, which is a member of the Fornax Cluster of Galaxies.
Anatomy of a Shooting Star
PIA09959
Ultraviolet/Visible Camera
Title Anatomy of a Shooting Star
Original Caption Released with Image Annotated Version A close-up view of a star racing through space faster than a speeding bullet can be seen in this image from NASA's Galaxy Evolution Explorer. The star, called Mira (pronounced My-rah), is traveling at 130 kilometers per second, or 291,000 miles per hour. As it hurls along, it sheds material that will be recycled into new stars, planets and possibly even life. In this image, Mira is moving from left to right. It is visible as the pinkish dot in the bulb shape at right. The yellow dot below is a foreground star. Mira is traveling so fast that it's creating a bow shock, or build-up of gas, in front of it, as can be seen here at right. Like a boat traveling through water, a bow shock forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a wake. Why is the wake of material glowing? When the hydrogen gas is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process called fluorescence. The Galaxy Evolution Explorer has special instruments that can detect this ultraviolet light. A similar fluorescence process is responsible for the Northern Lights -- a glowing, green aurora that can be seen from northern latitudes. However, in that case nitrogen and oxygen gas are fluorescing with visible light. Streams and a loop of material can also be seen coming off Mira. Astronomers are still investigating what these streams are, but they suspect that they are denser parts of Mira's wind perhaps flowing out of the star's poles. This image consists of data captured by both the far- and near-ultraviolet detectors on the Galaxy Evolution Explorer between November 18 and December 15, 2006. It has a total exposure time of about 3 hours.
Anatomy of a Shooting Star
PIA09959
Ultraviolet/Visible Camera
Title Anatomy of a Shooting Star
Original Caption Released with Image Annotated Version A close-up view of a star racing through space faster than a speeding bullet can be seen in this image from NASA's Galaxy Evolution Explorer. The star, called Mira (pronounced My-rah), is traveling at 130 kilometers per second, or 291,000 miles per hour. As it hurls along, it sheds material that will be recycled into new stars, planets and possibly even life. In this image, Mira is moving from left to right. It is visible as the pinkish dot in the bulb shape at right. The yellow dot below is a foreground star. Mira is traveling so fast that it's creating a bow shock, or build-up of gas, in front of it, as can be seen here at right. Like a boat traveling through water, a bow shock forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a wake. Why is the wake of material glowing? When the hydrogen gas is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process called fluorescence. The Galaxy Evolution Explorer has special instruments that can detect this ultraviolet light. A similar fluorescence process is responsible for the Northern Lights -- a glowing, green aurora that can be seen from northern latitudes. However, in that case nitrogen and oxygen gas are fluorescing with visible light. Streams and a loop of material can also be seen coming off Mira. Astronomers are still investigating what these streams are, but they suspect that they are denser parts of Mira's wind perhaps flowing out of the star's poles. This image consists of data captured by both the far- and near-ultraviolet detectors on the Galaxy Evolution Explorer between November 18 and December 15, 2006. It has a total exposure time of about 3 hours.
A Stellar Ripple
PIA03296
Chandra X-ray Telescope, GAL …
Title A Stellar Ripple
Original Caption Released with Image This false-color composite image shows the Cartwheel galaxy as seen by the Galaxy Evolution Explorer's far ultraviolet detector (blue), the Hubble Space Telescope's wide field and planetary camera 2 in B-band visible light (green), the Spitzer Space Telescope's infrared array camera at 8 microns (red), and the Chandra X-ray Observatory's advanced CCD imaging spectrometer-S array instrument (purple). Approximately 100 million years ago, a smaller galaxy plunged through the heart of Cartwheel galaxy, creating ripples of brief star formation. In this image, the first ripple appears as an ultraviolet-bright blue outer ring. The blue outer ring is so powerful in the Galaxy Evolution Explorer observations that it indicates the Cartwheel is one of the most powerful UV-emitting galaxies in the nearby universe. The blue color reveals to astronomers that associations of stars 5 to 20 times as massive as our sun are forming in this region. The clumps of pink along the outer blue ring are regions where both X-rays and ultraviolet radiation are superimposed in the image. These X-ray point sources are very likely collections of binary star systems containing a blackhole (called massive X-ray binary systems). The X-ray sources seem to cluster around optical/ultraviolet-bright supermassive star clusters. The yellow-orange inner ring and nucleus at the center of the galaxy result from the combination of visible and infrared light, which is stronger towards the center. This region of the galaxy represents the second ripple, or ring wave, created in the collision, but has much less star formation activity than the first (outer) ring wave. The wisps of red spread throughout the interior of the galaxy are organic molecules that have been illuminated by nearby low-level star formation. Meanwhile, the tints of green are less massive, older visible-light stars. Although astronomers have not identified exactly which galaxy collided with the Cartwheel, two of three candidate galaxies can be seen in this image to the bottom left of the ring, one as a neon blob and the other as a green spiral. Previously, scientists believed the ring marked the outermost edge of the galaxy, but the latest GALEX observations detect a faint disk, not visible in this image, that extends to twice the diameter of the ring.
Triple Scoop from Galaxy Hun …
PIA08646
GALEX Telescope
Title Triple Scoop from Galaxy Hunter
Original Caption Released with Image "Silver Dollar Galaxy: NGC 253 (figure 1)" Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles. "Gravitational Dance: NGC 1512 and NGC 1510 (figure 2)" In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress. The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510. "Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3)" NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy). The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing galaxies.
Triple Scoop from Galaxy Hun …
PIA08646
GALEX Telescope
Title Triple Scoop from Galaxy Hunter
Original Caption Released with Image "Silver Dollar Galaxy: NGC 253 (figure 1)" Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles. "Gravitational Dance: NGC 1512 and NGC 1510 (figure 2)" In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress. The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510. "Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3)" NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy). The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing galaxies.
Triple Scoop from Galaxy Hun …
PIA08646
GALEX Telescope
Title Triple Scoop from Galaxy Hunter
Original Caption Released with Image "Silver Dollar Galaxy: NGC 253 (figure 1)" Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles. "Gravitational Dance: NGC 1512 and NGC 1510 (figure 2)" In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress. The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510. "Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3)" NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy). The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing galaxies.
1 2 3 4 5 6 7
101-150 of 324