Search Results: All Fields similar to 'Explorer' and When equal to '2003'

Printer Friendly
1-35 of 35
     
     
NASA KSNN - Are You An Explo …
Are You An Explorer? This se …
6/1/03
Description Are You An Explorer? This segment describes the future plans NASA has for space exploration.
Date 6/1/03
Amazing Andromeda Galaxy
Title Amazing Andromeda Galaxy
Description The many "personalities" of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope. The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's "fiery" nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively "cool" side, which includes embryonic stars hidden in their dusty cocoons. Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars. Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them. Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist. Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across. This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).
Galaxy Centaurus A
PIA04624
GALEX Telescope
Title Galaxy Centaurus A
Original Caption Released with Image This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy NGC 55
PIA04923
GALEX Telescope
Title Galaxy NGC 55
Original Caption Released with Image This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the "local group" of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.
Galaxy NGC 300
PIA04924
GALEX Telescope
Title Galaxy NGC 300
Original Caption Released with Image This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300.
Galaxy NGC 247
PIA04922
GALEX Telescope
Title Galaxy NGC 247
Original Caption Released with Image This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a "hole" in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.
Teacher Kim Cantrell from th …
Photo Description Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question.
Photo Date July 15, 2003
Ghostly Remnant of an Explos …
PIA09219
Far-ultraviolet Detector
Title Ghostly Remnant of an Explosive Past
Original Caption Released with Image This enhanced image from the far-ultraviolet detector on NASA's Galaxy Evolution Explorer shows a ghostly shell of ionized gas around Z Camelopardalis, a binary, or double-star system featuring a collapsed, dead star known as a white dwarf, and a companion star. The image was processed to enhance the diffuse emissions from the shell. Z Cam is the bright object near the center of the image. Parts of the shell are seen as a lobe-like, light-blue feature below and to the right of Z Cam, and as two large, light blue, perpendicular lines on the left. The massive shell around Z Cam provides evidence of material ejected during and swept up by a powerful nova eruption, called a classical nova, which likely occurred a few thousand years ago. In exploding binary systems, one of the two stars steals material from the other until it builds up to a certain level, at that point, the system erupts in a giant inferno. In the case of Z Cam, the white dwarf is pilfering material from its sedate companion. There are two classes of exploding binary star systems, or cataclysmic variables: recurrent dwarf novae, which erupt in small, "hiccup-like" blasts episodically, and classical novae, which undergo huge explosions thousands of times more powerful than dwarf novae. Z Cam was the one of the first known recurrent dwarf novae. Yet the shell of ionized gas around Z Cam detected by the Galaxy Evolution Explorer can only be explained as the remnant of a full-blown classical nova explosion. The discovery of the shell provides the first evidence that some binary systems undergo both types of explosions. Previously, a link between the two types of novae had been predicted, but there was no evidence to support the theory. The Galaxy Evolution Explorer first began imaging Z Cam in 2003, this image was taken on Jan. 25, 2004. The type of emission found around Z Cam is most easily visible at far-ultraviolet wavelengths. Most of the background galaxies and stars have been eliminated by the image processing, although a few linger as white spots near the top. The light-blue streaky clump in the bottom right corner is created by ultraviolet light reflected by dust. It is uncertain if Z Cam is the source of the dust-scattered light.
Ghostly Remnant of an Explos …
PIA09219
Far-ultraviolet Detector
Title Ghostly Remnant of an Explosive Past
Original Caption Released with Image This enhanced image from the far-ultraviolet detector on NASA's Galaxy Evolution Explorer shows a ghostly shell of ionized gas around Z Camelopardalis, a binary, or double-star system featuring a collapsed, dead star known as a white dwarf, and a companion star. The image was processed to enhance the diffuse emissions from the shell. Z Cam is the bright object near the center of the image. Parts of the shell are seen as a lobe-like, light-blue feature below and to the right of Z Cam, and as two large, light blue, perpendicular lines on the left. The massive shell around Z Cam provides evidence of material ejected during and swept up by a powerful nova eruption, called a classical nova, which likely occurred a few thousand years ago. In exploding binary systems, one of the two stars steals material from the other until it builds up to a certain level, at that point, the system erupts in a giant inferno. In the case of Z Cam, the white dwarf is pilfering material from its sedate companion. There are two classes of exploding binary star systems, or cataclysmic variables: recurrent dwarf novae, which erupt in small, "hiccup-like" blasts episodically, and classical novae, which undergo huge explosions thousands of times more powerful than dwarf novae. Z Cam was the one of the first known recurrent dwarf novae. Yet the shell of ionized gas around Z Cam detected by the Galaxy Evolution Explorer can only be explained as the remnant of a full-blown classical nova explosion. The discovery of the shell provides the first evidence that some binary systems undergo both types of explosions. Previously, a link between the two types of novae had been predicted, but there was no evidence to support the theory. The Galaxy Evolution Explorer first began imaging Z Cam in 2003, this image was taken on Jan. 25, 2004. The type of emission found around Z Cam is most easily visible at far-ultraviolet wavelengths. Most of the background galaxies and stars have been eliminated by the image processing, although a few linger as white spots near the top. The light-blue streaky clump in the bottom right corner is created by ultraviolet light reflected by dust. It is uncertain if Z Cam is the source of the dust-scattered light.
Ghostly Remnant of an Explos …
PIA09219
Far-ultraviolet Detector
Title Ghostly Remnant of an Explosive Past
Original Caption Released with Image This enhanced image from the far-ultraviolet detector on NASA's Galaxy Evolution Explorer shows a ghostly shell of ionized gas around Z Camelopardalis, a binary, or double-star system featuring a collapsed, dead star known as a white dwarf, and a companion star. The image was processed to enhance the diffuse emissions from the shell. Z Cam is the bright object near the center of the image. Parts of the shell are seen as a lobe-like, light-blue feature below and to the right of Z Cam, and as two large, light blue, perpendicular lines on the left. The massive shell around Z Cam provides evidence of material ejected during and swept up by a powerful nova eruption, called a classical nova, which likely occurred a few thousand years ago. In exploding binary systems, one of the two stars steals material from the other until it builds up to a certain level, at that point, the system erupts in a giant inferno. In the case of Z Cam, the white dwarf is pilfering material from its sedate companion. There are two classes of exploding binary star systems, or cataclysmic variables: recurrent dwarf novae, which erupt in small, "hiccup-like" blasts episodically, and classical novae, which undergo huge explosions thousands of times more powerful than dwarf novae. Z Cam was the one of the first known recurrent dwarf novae. Yet the shell of ionized gas around Z Cam detected by the Galaxy Evolution Explorer can only be explained as the remnant of a full-blown classical nova explosion. The discovery of the shell provides the first evidence that some binary systems undergo both types of explosions. Previously, a link between the two types of novae had been predicted, but there was no evidence to support the theory. The Galaxy Evolution Explorer first began imaging Z Cam in 2003, this image was taken on Jan. 25, 2004. The type of emission found around Z Cam is most easily visible at far-ultraviolet wavelengths. Most of the background galaxies and stars have been eliminated by the image processing, although a few linger as white spots near the top. The light-blue streaky clump in the bottom right corner is created by ultraviolet light reflected by dust. It is uncertain if Z Cam is the source of the dust-scattered light.
Ghostly Remnant of an Explos …
PIA09219
Far-ultraviolet Detector
Title Ghostly Remnant of an Explosive Past
Original Caption Released with Image This enhanced image from the far-ultraviolet detector on NASA's Galaxy Evolution Explorer shows a ghostly shell of ionized gas around Z Camelopardalis, a binary, or double-star system featuring a collapsed, dead star known as a white dwarf, and a companion star. The image was processed to enhance the diffuse emissions from the shell. Z Cam is the bright object near the center of the image. Parts of the shell are seen as a lobe-like, light-blue feature below and to the right of Z Cam, and as two large, light blue, perpendicular lines on the left. The massive shell around Z Cam provides evidence of material ejected during and swept up by a powerful nova eruption, called a classical nova, which likely occurred a few thousand years ago. In exploding binary systems, one of the two stars steals material from the other until it builds up to a certain level, at that point, the system erupts in a giant inferno. In the case of Z Cam, the white dwarf is pilfering material from its sedate companion. There are two classes of exploding binary star systems, or cataclysmic variables: recurrent dwarf novae, which erupt in small, "hiccup-like" blasts episodically, and classical novae, which undergo huge explosions thousands of times more powerful than dwarf novae. Z Cam was the one of the first known recurrent dwarf novae. Yet the shell of ionized gas around Z Cam detected by the Galaxy Evolution Explorer can only be explained as the remnant of a full-blown classical nova explosion. The discovery of the shell provides the first evidence that some binary systems undergo both types of explosions. Previously, a link between the two types of novae had been predicted, but there was no evidence to support the theory. The Galaxy Evolution Explorer first began imaging Z Cam in 2003, this image was taken on Jan. 25, 2004. The type of emission found around Z Cam is most easily visible at far-ultraviolet wavelengths. Most of the background galaxies and stars have been eliminated by the image processing, although a few linger as white spots near the top. The light-blue streaky clump in the bottom right corner is created by ultraviolet light reflected by dust. It is uncertain if Z Cam is the source of the dust-scattered light.
Surprise Ultraviolet Party i …
PIA07251
GALEX Telescope
Title Surprise Ultraviolet Party in the Sky
Original Caption Released with Image Galaxies aren't the only objects filling up the view of NASA's Galaxy Evolution Explorer. Since its launch in 2003, the space telescope -- originally designed to observe galaxies across the universe in ultraviolet light -- has discovered a festive sky blinking with flaring and erupting stars, as well as streaking asteroids, satellites and space debris. A group of six streaking objects -- the identities of which remain unknown -- can be seen here flying across the telescope's sight in this sped-up movie. The two brightest objects appear to perform a sharp turn then travel in the reverse direction. This illusion is most likely the result of the Galaxy Evolution Explorer overtaking the objects as it orbits around Earth. Careful inspection reveals four additional faint objects with the same timing and behavior. These faint objects are easiest to see during the retrograde portion of their paths. Three appear between the two bright sources, and one is above them, near the edge of the field of view. These bonus objects are being collected in to public catalogues for other astronomers to study.
Galaxy UGC10445
PIA04623
GALEX Telescope
Title Galaxy UGC10445
Original Caption Released with Image This ultraviolet color image of the galaxy UGC10445 was taken by NASA's Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy NGC5962
PIA04635
GALEX Telescope
Title Galaxy NGC5962
Original Caption Released with Image NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy Messier 83
PIA04629
GALEX Telescope
Title Galaxy Messier 83
Original Caption Released with Image This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Groth Deep Image
PIA04625
GALEX Telescope
Title Groth Deep Image
Original Caption Released with Image This ultraviolet color blowup of the Groth Deep Image was taken by NASA's Galaxy Evolution Explorer on June 22 and June 23, 2003. Many hundreds of galaxies are detected in this portion of the image. NASA astronomers believe the faint red galaxies are 6 billion light years away. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Messier 101
PIA04631
GALEX Telescope
Title Messier 101
Original Caption Released with Image NASA's Galaxy Evolution Explorer took this near ultraviolet image of Messier 101 on June 20, 2003. Messier 101 is a large spiral galaxy located 20 million light-years from Earth. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Groth Deep Locations Image
PIA04626
GALEX Telescope
Title Groth Deep Locations Image
Original Caption Released with Image NASA's Galaxy Evolution Explorer photographed this ultraviolet color blowup of the Groth Deep Image on June 22 and June 23, 2003. Hundreds of galaxies are detected in this portion of the image, and the faint red galaxies are believed to be 6 billion light years away. The white boxes show the location of these distant galaxies, of which more than a 100 can be detected in this image. NASA astronomers expect to detect 10,000 such galaxies after extrapolating to the full image at a deeper exposure level. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy M101
PIA04630
GALEX Telescope
Title Galaxy M101
Original Caption Released with Image This three-color image of galaxy M101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. The far ultraviolet emissions are shown in blue, the near ultraviolet emissions are green, and the red emissions, which were taken from NASA's Digital Sky Survey, represent visible light. This image combines short, medium, and long "exposure" pictures to best display the evolution of star formation in a spiral galaxy. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy NGC5398
PIA04633
GALEX Telescope
Title Galaxy NGC5398
Original Caption Released with Image This is an ultraviolet color image of the galaxy NGC5398 taken by NASA's Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Galaxy NGC5474
PIA04634
GALEX Telescope
Title Galaxy NGC5474
Original Caption Released with Image NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Messier 101 Single Orbit Exp …
PIA04632
GALEX Telescope
Title Messier 101 Single Orbit Exposure
Original Caption Released with Image This single orbit exposure, ultraviolet color image of Messier 101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. Messier 101 is a large spiral galaxy located 20 million light-years from Earth. This image is a short and medium "exposure" picture of the evolution of star formation in a spiral galaxy. The far ultraviolet emission detects the younger stars as concentrated in tight spiral arms, while the near ultraviolet emission, which traces stars living for more than 100 million years, displays the movement of the spiral pattern over a 100 million year period. The red stars in the foreground of the image are Milky Way stars. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.
Andromeda Galaxy
PIA04921
GALEX Telescope
Title Andromeda Galaxy
Original Caption Released with Image This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white "bulge" of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise "red", old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.
Andromeda Galaxy
PIA04921
GALEX Telescope
Title Andromeda Galaxy
Original Caption Released with Image This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white "bulge" of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise "red", old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.
Andromeda Galaxy
PIA04921
GALEX Telescope
Title Andromeda Galaxy
Original Caption Released with Image This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white "bulge" of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise "red", old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.
Globular Cluster Messier 2 i …
PIA04926
GALEX Telescope
Title Globular Cluster Messier 2 in Aquarius
Original Caption Released with Image This image of the Globular cluster Messier 2 (M2) was taken by Galaxy Evolution Explorer on August 20, 2003. This image is a small section of a single All Sky Imaging Survey exposure of only 129 seconds in the constellation Aquarius. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors (colored red). Globular clusters are gravitationally bound systems of hundreds of thousands of stars that orbit in the halos of galaxies. The globular clusters in out Milky Way galaxy contain some of the oldest stars known. M2 lies 33,000 light years from our Sun with stars distributed in a spherical system with a radius of approximately 100 light years.
Multiwavelength M81
Title Multiwavelength M81
Description This beautiful galaxy is tilted at an oblique angle on to our line of sight, giving a "birds-eye view" of the spiral structure. The galaxy is similar to our Milky Way, but our favorable view provides a better picture of the typical architecture of spiral galaxies. M81 may be undergoing a surge of star formation along the spiral arms due to a close encounter it may have had with its nearby spiral galaxy NGC 3077 and a nearby starburst galaxy (M82) about 300 million years ago. M81 is one of the brightest galaxies that can be seen from the Earth. It is high in the northern sky in the circumpolar constellation Ursa Major, the Great Bear. At an apparent magnitude of 6.8 it is just at the limit of naked-eye visibility. The galaxy's angular size is about the same as that of the Full Moon. This image combines data from the Hubble Space Telescope, the Spitzer Space Telescope, and the Galaxy Evolution Explorer (GALEX) missions. The GALEX ultraviolet data were from the far-UV portion of the spectrum (135 to 175 nanometers). The Spitzer infrared data were taken with the IRAC 4 detector (8 microns). The Hubble data were taken at the blue portion of the spectrum.
It's Not a Bird or a Plane
PIA07250
GALEX Telescope
Title It's Not a Bird or a Plane
Original Caption Released with Image Galaxies aren't the only objects filling up the view of NASA's Galaxy Evolution Explorer. Since its launch in 2003, the space telescope -- originally designed to observe galaxies across the universe in ultraviolet light -- has discovered a festive sky blinking with flaring and erupting stars, as well as streaking asteroids, satellites and space debris. One such streaking object -- possibly an Earth-orbiting satellite -- can be seen here flying across the telescope's sight in this sped-up movie. This probable satellite appears during the last 5 minutes of a 13.5-minute observation. It looks elongated because each picture frame containing the moving object is 19 seconds long. Faint ghost images on either side of the source are detector artifacts caused by the object's extreme brightness. These bonus objects are being collected in to public catalogues for other astronomers to study.
Explorer 1
Title Explorer 1
Description America's First Satellite America joined the space race with the launch of this small, but important spacecraft.
Date 07.01.2003
Scene of Multiple Explosions
PIA09220
Far-ultraviolet Detector, Ne …
Title Scene of Multiple Explosions
Original Caption Released with Image This composite image shows Z Camelopardalis, or Z Cam, a double-star system featuring a collapsed, dead star, called a white dwarf, and a companion star, as well as a ghostly shell around the system. The massive shell provides evidence of lingering material ejected during and swept up by a powerful classical nova explosion that occurred probably a few thousand years ago. The image combines data gathered from the far-ultraviolet and near-ultraviolet detectors on NASA's Galaxy Evolution Explorer on Jan. 25, 2004. The orbiting observatory first began imaging Z Cam in 2003. Z Cam is the largest white object in the image, located near the center. Parts of the shell are seen as a lobe-like, wispy, yellowish feature below and to the right of Z Cam, and as two large, whitish, perpendicular lines on the left. Z Cam was one of the first known recurrent dwarf nova, meaning it erupts in a series of small, "hiccup-like" blasts, unlike classical novae, which undergo a massive explosion. That's why the huge shell around Z Cam caught the eye of astronomer Dr. Mark Seibert of Carnegie Institution of Washington in Pasadena, Calif. - it could only be explained as the remnant of a full-blown classical nova explosion. This finding provides the first evidence that some binary systems undergo both types of explosions. Previously, a link between the two types of novae had been predicted, but there was no evidence to support the theory. The faint bluish streak in the bottom right corner of the image is ultraviolet light reflected by dust that may or may not be related to Z Cam. Numerous foreground and background stars and galaxies are visible as yellow and white spots. The yellow objects are strong near-ultraviolet emitters, blue features have strong far-ultraviolet emission, and white objects have nearly equal amounts of near-ultraviolet and far-ultraviolet emission.
Scene of Multiple Explosions
PIA09220
Far-ultraviolet Detector, Ne …
Title Scene of Multiple Explosions
Original Caption Released with Image This composite image shows Z Camelopardalis, or Z Cam, a double-star system featuring a collapsed, dead star, called a white dwarf, and a companion star, as well as a ghostly shell around the system. The massive shell provides evidence of lingering material ejected during and swept up by a powerful classical nova explosion that occurred probably a few thousand years ago. The image combines data gathered from the far-ultraviolet and near-ultraviolet detectors on NASA's Galaxy Evolution Explorer on Jan. 25, 2004. The orbiting observatory first began imaging Z Cam in 2003. Z Cam is the largest white object in the image, located near the center. Parts of the shell are seen as a lobe-like, wispy, yellowish feature below and to the right of Z Cam, and as two large, whitish, perpendicular lines on the left. Z Cam was one of the first known recurrent dwarf nova, meaning it erupts in a series of small, "hiccup-like" blasts, unlike classical novae, which undergo a massive explosion. That's why the huge shell around Z Cam caught the eye of astronomer Dr. Mark Seibert of Carnegie Institution of Washington in Pasadena, Calif. - it could only be explained as the remnant of a full-blown classical nova explosion. This finding provides the first evidence that some binary systems undergo both types of explosions. Previously, a link between the two types of novae had been predicted, but there was no evidence to support the theory. The faint bluish streak in the bottom right corner of the image is ultraviolet light reflected by dust that may or may not be related to Z Cam. Numerous foreground and background stars and galaxies are visible as yellow and white spots. The yellow objects are strong near-ultraviolet emitters, blue features have strong far-ultraviolet emission, and white objects have nearly equal amounts of near-ultraviolet and far-ultraviolet emission.
Scene of Multiple Explosions
PIA09220
Far-ultraviolet Detector, Ne …
Title Scene of Multiple Explosions
Original Caption Released with Image This composite image shows Z Camelopardalis, or Z Cam, a double-star system featuring a collapsed, dead star, called a white dwarf, and a companion star, as well as a ghostly shell around the system. The massive shell provides evidence of lingering material ejected during and swept up by a powerful classical nova explosion that occurred probably a few thousand years ago. The image combines data gathered from the far-ultraviolet and near-ultraviolet detectors on NASA's Galaxy Evolution Explorer on Jan. 25, 2004. The orbiting observatory first began imaging Z Cam in 2003. Z Cam is the largest white object in the image, located near the center. Parts of the shell are seen as a lobe-like, wispy, yellowish feature below and to the right of Z Cam, and as two large, whitish, perpendicular lines on the left. Z Cam was one of the first known recurrent dwarf nova, meaning it erupts in a series of small, "hiccup-like" blasts, unlike classical novae, which undergo a massive explosion. That's why the huge shell around Z Cam caught the eye of astronomer Dr. Mark Seibert of Carnegie Institution of Washington in Pasadena, Calif. - it could only be explained as the remnant of a full-blown classical nova explosion. This finding provides the first evidence that some binary systems undergo both types of explosions. Previously, a link between the two types of novae had been predicted, but there was no evidence to support the theory. The faint bluish streak in the bottom right corner of the image is ultraviolet light reflected by dust that may or may not be related to Z Cam. Numerous foreground and background stars and galaxies are visible as yellow and white spots. The yellow objects are strong near-ultraviolet emitters, blue features have strong far-ultraviolet emission, and white objects have nearly equal amounts of near-ultraviolet and far-ultraviolet emission.
New Galaxy Quest Readies for …
Title New Galaxy Quest Readies for Launch
Description In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.
Date 03.19.2003
Galaxy Mission Completes Fou …
PIA09337
GALEX Telescope
Title Galaxy Mission Completes Four Star-Studded Years in Space
Original Caption Released with Image NASA's Galaxy Evolution Explorer is celebrating its fourth year in space with some of M81's "hottest" stars. In a new ultraviolet image, the magnificent M81 spiral galaxy is shown at the center. The orbiting observatory spies the galaxy's "sizzling young starlets" as wisps of bluish-white swirling around a central golden glow. The tints of gold at M81's center come from a "senior citizen" population of smoldering stars. "This is a spectacular view of M81," says Dr. John Huchra, of the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass. "When we proposed to observe this galaxy with GALEX we hoped to see globular clusters, open clusters, and young stars...this view is everything that we were hoping for." The image is one of thousands gathered so far by GALEX, which launched April 28, 2003. This mission uses ultraviolet wavelengths to measure the history of star formation 80 percent of the way back to the Big Bang. The large fluffy bluish-white material to the left of M81 is a neighboring galaxy called Holmberg IX. This galaxy is practically invisible to the naked human eye. However, it is illuminated brilliantly in GALEX's wide ultraviolet eyes. Its ultraviolet colors show that it is actively forming young stars. The bluish-white fuzz in the space surrounding M81 and Holmberg IX is new star formation triggered by gravitational interactions between the two galaxies. Huchra notes that the active star formation in Holmberg IX is a surprise, and says that more research needs to be done in light of the new findings from GALEX. "Some astronomers suspect that the galaxy Holmberg IX is the result of a galactic interaction between M81 and another neighboring galaxy M82," says Huchra. "This particular galaxy is especially important because there are a lot of galaxies like Holmberg IX around our Milky Way galaxy. By understanding how Holmberg IX came to be, we hope to understand how all the little galaxies surrounding the Milky Way developed.""Four years after GALEX's launch, the spacecraft is performing magnificently. The mission results have been simply amazing as it helps us to unlock the secrets of galaxies, the building blocks of our universe," says Kerry Erickson, GALEX project manager. M81 and Holberg IX are located approximately 12 million light-years away in the northern constellation Ursa Major. In addition to leading the GALEX observations of M81, Huchra and his team also took observations of the region with NASA's Spitzer and Hubble space telescopes. By combining all these views of M81, Huchra hopes to gain a better understanding about how M81 has developed into the spiral galaxy we see today. The California Institute of Technology in Pasadena, Calif., leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, also in Pasadena, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. Researchers from South Korea and France collaborated on this mission.
Artist's Concept of Deep Spa …
Title Artist's Concept of Deep Space 1 Encounter with Comet Borrelly
Description Press Release September 18, 2001 Veteran Spacecraft Attempts to Earn Extra Credit at Comet Like a slugger trying to pile up extra home runs after breaking the world record, a venerable NASA spacecraft already famed for bringing science fiction's ion-engine technology to life is preparing to fly daringly close to a comet on Saturday, Sept. 22. Deep Space 1, which has already completed a highly successful mission testing a number of advanced spacecraft technologies, will attempt to pass inside the mostly unknown environment just 2,000 kilometers (about 1,200 miles) from the nucleus of comet Borrelly at 2230 Universal time (3:30 p.m. PDT) on Sept. 22."It has been a tremendously rewarding effort for the small Deep Space 1 team to keep this aged and wounded bird aloft," said Dr. Marc Rayman, project manager of Deep Space 1 at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Its mission to test new technologies is already highly successful and any science we get at the comet will be a terrific bonus." By the time of the flyby Deep Space 1 will have completed three times its intended lifetime in space and its primary mission to test ion propulsion and 11 other high-risk, advanced technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to target a chancy but exciting encounter with Borrelly. The spacecraft may tell us more about comets and their place in the solar system. The robotic explorer will attempt to investigate the comet's environment when it tries to fly through the cloud of gas and dust surrounding the comet's nucleus, known as the coma. The risks involved in gathering science data are very high, so results of this latest venture are unpredictable. The spacecraft will be traveling through a cloud of gas, dust and comet pieces to collect its data. Since Deep Space 1 wasn't built to go to a comet, it does not carry a protective shield. "We expect to be hit by debris from the comet, and at 16.5 kilometers per second (about 36,900 mph), even a tiny particle might prove fatal," said Rayman. "But this is an adventure too exciting to pass up." If all goes well, scientists will use the comet chaser's measurements to find out the nature of Borrelly's surface and to measure and identify the gases coming from the comet. The spacecraft will also attempt to measure the interaction of solar wind with the comet, a process that leads to formation of the beautiful tail. Borrelly makes a good target for study now, as it is just 1.34 astronomical units (about 200 million kilometers or 125 million miles) from the Sun -- the closest it will get for another seven years. The Sun's heat will make the gases escaping from the nucleus flow faster and more thickly, so they will be easier to study. The icy nucleus and the spacecraft will flash past each other at 16.5 kilometers per second (more than 36,900 miles per hour). The flight team is also hoping that Deep Space 1 will have enough gas to get, to the comet. The long-lived spacecraft keeps itself pointed correctly by firing small thrusters fueled by hydrazine gas. When the hydrazine runs out, Deep Space 1 will be unable to keep itself pointed correctly, and the spacecraft will die. The flight team has an estimate of how much gas is left, but a few hours' worth of gas could make all the difference in the comet encounter. As it approaches the center of the coma, the spacecraft will face its greatest challenge: to obtain pictures and infrared measurements of the nucleus. Deep Space 1 can't tell exactly where the nucleus is or what it will look like. The craft will have to locate the nucleus on its own and try to point the camera toward it as it streaks by. In late 1999, Deep Space 1 lost its star tracker, which helps determine the spacecraft's orientation. Faced with what could have been a mission-terminating injury, the controllers performed a spectacular ultra-long-distance rescue. They reconfigured the spacecraft to use the photographic camera to orient itself by the stars around it. The camera cannot align the spacecraft and snap photos of Borrelly at the same time. Instead, Deep Space 1 will have to rely on its fiber-optic gyroscopes to help maintain its orientation. But the gyros are not accurate enough by themselves, so engineers designed complex new software to help the camera stay pointed at the comet's nucleus during the critical few minutes that the probe will be close enough to try to get a view of it. More information can be found online athttp://nmp.jpl.nasa.gov/ds1/ [ http://nmp.jpl.nasa.gov/ds1/ ]http://nmp.jpl.nasa.gov/ds1/Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington. The California Institute of Technology in Pasadena manages JPL for NASA.
Date 05.09.2003
1-35 of 35