|
Search Results: All Fields similar to 'Dryden or Langley' and When equal to '2001'
|
Printer Friendly |
First B-52 captive flight of
Shuttle Carrier Aircraft
EC01-0032-02The sun begins t
02/13/2001
Description |
EC01-0032-02The sun begins to break through the clouds over NASA's two 747 Shuttle Carrier Aircraft on the NASA Dryden ramp after a rain shower in February 2001. February 13, 2001 NASA Photo / Tony LandisSCA Project Description |
Date |
02/13/2001 |
|
X-40A Space Manuever Vehicle
EC01-0145-12X-40A landing af
05/05/2001
Description |
EC01-0145-12X-40A landing after Free Flight 4A May 5, 2001 NASA Photo / Tom Tschida |
Date |
05/05/2001 |
|
X-40A Space Manuever Vehicle
EC01-0145-3CH-47 and X-40A b
05/05/2001
Description |
EC01-0145-3CH-47 and X-40A before Free flight 4A May 5, 2001 NASA Photo / Tony Landis |
Date |
05/05/2001 |
|
X-40A Space Manuever Vehicle
EC01-0168-1 May 18, 2001 NAS
05/08/2001
Description |
EC01-0168-1 May 18, 2001 NASA Photo / Tony Landis |
Date |
05/08/2001 |
|
X-40A Space Manuever Vehicle
EC01-0148-21 X-40A Free Flig
05/08/2001
Description |
EC01-0148-21 X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. May 8, 2001 NASA Photo / Jim Ross |
Date |
05/08/2001 |
|
X-40A Space Manuever Vehicle
EC01-0070-1 The X-40A immedi
03/14/2001
Description |
EC01-0070-1 The X-40A immediately after release from its harness suspended from a helicopter 15,000 feet above NASA's Dryden Flight Research Center at Edwards Air Force Base, California, on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. March 14, 2001 NASA Photo / Carla Thomas |
Date |
03/14/2001 |
|
X-40A Space Manuever Vehicle
EC01-0070-2 First flight at
03/14/2001
Description |
EC01-0070-2 First flight at NASA's Dryden Flight Research Center for the X-40A was a 74 second glide from 15,000 feet on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. March 14, 2001 NASA Photo / Carla Thomas |
Date |
03/14/2001 |
|
X-40A Space Manuever Vehicle
EC01-0070-3 Wranglers steadi
03/14/2001
Description |
EC01-0070-3 Wranglers steadied the X-40A at NASA's Dryden Flight Research Center, Edwards, California, March 14, 2001, as the experimental craft was carried to 15,000 feet for an unpiloted glide flight. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. March 14, 2001 NASA Photo / Tony Landis |
Date |
03/14/2001 |
|
X-40A Space Manuever Vehicle
EC01-0148-15 X-40A Free Flig
05/08/2001
Description |
EC01-0148-15 X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. May 8, 2001 NASA Photo / Jim Ross |
Date |
05/08/2001 |
|
X-40A Space Manuever Vehicle
EC01-0107-01 Second free-fli
04/12/2001
Description |
EC01-0107-01 Second free-flight of the X-40A at the NASA Dryden Flight Research Center, on Edwards AFB, Calif., was made on Apr. 12, 2001. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, is proving the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. The April 12 flight introduced complex vehicle maneuvers during the landing sequence. The X-40A was released from an Army Chinook helicopter flying 15,050 feet overhead. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission. April 12, 2001 NASA Photo / Carla Thomas |
Date |
04/12/2001 |
|
X-40A Space Manuever Vehicle
EC01-0107-05 Second free-fli
04/12/2001
Description |
EC01-0107-05 Second free-flight of the X-40A at the NASA Dryden Flight Research Center, on Edwards AFB, Calif., was made on Apr. 12, 2001. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, is proving the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. The April 12 flight introduced complex vehicle maneuvers during the landing sequence. The X-40A was released from an Army Chinook helicopter flying 15,050 feet overhead. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission. April 12, 2001 NASA Photo / Tony Landis |
Date |
04/12/2001 |
|
Two NASA Dryden F/A-18's lan
Photo Date |
September 20, 2001 |
|
DARPA, U.S. Air Force, Boein
Photo Date |
October 24, 2001 |
|
Photo Description |
Marta Bohn-Meyer, Chief Engineer, NASA Dryden Flight Research Center |
Photo Date |
March 9, 2001 |
|
Photo Description |
Dr. Michael H. Gorn, Chief Historian at NASA Dryden Flight Research Center |
Photo Date |
October 11, 2001 |
|
A B-52H, on loan to NASA's D
A B-52H, tail number 61-0025
Aerial photo of NASA Dryden
Photo Date |
April 25, 2001 |
|
Photo Description |
NASA obtained a B-52H bomber from the U.S. Air Force in 2001, intending to use the aircraft as an air-launch and testbed aircraft to support NASA, Air Force and industry flight research and advanced technology demonstration efforts at NASA's Dryden Flight Research Center, Edwards AFB, Calif. The B-52H replaced Dryden's famous B-52B "008" following that aircraft's retirement on Dec. 17, 2004. However, with no research projects requiring its capabilities on the horizon under NASA's restructured aeronautics research programs, the decision was made to return the aircraft to the Air Force. |
Project Description |
unknown |
Photo Date |
October 7, 2003 |
|
Photo Description |
NASA obtained a B-52H bomber from the U.S. Air Force in 2001, intending to use the aircraft as an air-launch and testbed aircraft to support NASA, Air Force and industry flight research and advanced technology demonstration efforts at NASA's Dryden Flight Research Center, Edwards AFB, Calif. The B-52H replaced Dryden's famous B-52B "008" following that aircraft's retirement on Dec. 17, 2004. However, with no research projects requiring its capabilities on the horizon under NASA's restructured aeronautics research programs, the decision was made to return the aircraft to the Air Force. |
Project Description |
unknown |
Photo Date |
October 7, 2003 |
|
NASA Dryden Millennium All-H
Photo Date |
April 24, 2001 |
|
NASA Dryden's B-52H in fligh
Photo Date |
August 16, 2002 |
|
C-17 taxi
Photo Description |
C-17 taxi |
Project Description |
NASA Dryden is participating with the U.S. Air Force (USAF), other NASA centers, Boeing, and the Pratt & Whitney company in the Propulsion Health Management (PHM) portion of the Integrated Vehicle Health Management (IVHM) program. The program is using a USAF C-17 transport in an effort to enhance aircraft safety by enabling early electronic detection of potential problems with aircraft engines and associated systems. |
Photo Date |
December 4, 2001 |
|
C-17 takeoff
Photo Description |
C-17 takeoff |
Project Description |
NASA Dryden is participating with the U.S. Air Force (USAF), other NASA centers, Boeing, and the Pratt & Whitney company in the Propulsion Health Management (PHM) portion of the Integrated Vehicle Health Management (IVHM) program. The program is using a USAF C-17 transport in an effort to enhance aircraft safety by enabling early electronic detection of potential problems with aircraft engines and associated systems. |
Photo Date |
December 4, 2001 |
|
NASA Connect - FOFE - Testin
NASA Connect segment explori
11/1/01
Description |
NASA Connect segment exploring the process of flight testing. The segment features the Hyper-X and answers questions pertaining to its test stage. |
Date |
11/1/01 |
|
Ed Schneider gives a "thumbs
Photo Date |
September 19, 2000 |
|
The Aerostructures Test Wing
Photo Date |
March 28, 2001 |
|
B-52/Pegasus with X-43A depa
Photo Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. |
Project Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A "stack" as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds. |
Photo Date |
April 28, 2001 |
|
B-52/Pegasus with X-43A in f
Photo Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. |
Project Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A "stack" as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds. |
Photo Date |
April 28, 2001 |
|
B-52/Pegasus with X-43A land
Photo Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. |
Project Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A "stack" as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds. |
Photo Date |
April 28, 2001 |
|
Close view of B-52/Pegasus w
Photo Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. |
Project Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A "stack" as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds. |
Photo Date |
April 28, 2001 |
|
Flying an Autonomous Formati
Photo Date |
September 20, 2001 |
|
This modified F/A-18A is the
Photo Description |
This modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California. |
Project Description |
The Active Aeroelastic Wing project at NASA's Dryden Flight Research Center is a two-phase flight research program that is investigating the potential of aerodynamically twisting flexible wings to improve roll maneuverability of high-performance aircraft at transonic and supersonic speeds. Traditional control surfaces such as ailerons and leading-edge flaps are used as active trim tabs to aerodynamically induce the twist. From flight test and simulation data, the program is developing structural modeling techniques and tools to help design lighter, more flexible high aspect-ratio wings for future high-performance aircraft, which could translate to more economical operation or greater payload capability. The program uses a modified F/A-18A Hornet as its testbed aircraft, with wings that were modified to the flexibility of the original pre-production F-18 wing. Other aircraft modifications include a new actuator to operate the outboard portion of a divided leading edge flap over a greater range and rate, and a research flight control system to host the aeroelastic wing control laws. AAW flight tests began in November, 2002 with checkout and parameter-identification flights. Based on data obtained during 50 research flights over a five-month period, new AAW flight control software was then developed over the following year. A second series of research flights began in late 2004 evaluated the AAW concept in a real-world flight environment, using the newly created control laws in the aircaft's research flight control computer. About 45 research missions were flown over a four-month period in the second phase of flight testing that concluded in March, 2005. Extensive analysis of data acquired during the project is continuing at NASA Dryden. The Active Aeroelastic Wing Program is jointly funded and managed by the Air Force Research Laboratory and NASA Dryden Flight Research Center, with Boeing's Phantom Works as prime contractor for wing modifications and flight control software development. The F/A-18A aircraft was provided by the Naval Aviation Systems Test Team and modified for its research role by NASA Dryden technicians. |
Photo Date |
October 24, 2001 |
|
The Space Shuttle Endeavour
Smoke generators show the tw
Photo Date |
November 9, 2001 |
|
NASA's B-52 takes the X-38 a
A newly arrived B-52H is see
Photo Date |
August 1, 2001 |
|
Two F/A-18B aircraft involve
Photo Description |
After completing a milestone autonomous station-keeping formation, two F/A-18B aircraft from the NASA Dryden Flight Research Center, Edwards, California, return to base in close formation with the autonomous function disengaged. For the milestone, the aircraft were spaced approximately 200 feet nose-to-tail and 50 feet apart laterally and vertically. Autonomous formation control was maintained by the trailing aircraft, the Systems Research Aircraft (SRA), in the lateral and vertical axes to within five feet of the commanded position. Nose-to-tail separation of the aircraft was controlled by manual throttle inputs by the trailing aircraft's pilot. The milestone was accomplished on the seventh flight of a 12 flight phase. The AFF flights were a first for a project under NASA's Revolutionary (RevCon) in Aeronautics Project. Dryden is the lead NASA center for RevCon, an endeavor to accelerate the exploration of high-risk, revolutionary technologies in atmospheric flight. Automated formation flight could lead to formation fuel efficiencies and higher air traffic capacity. In the background is the U. S. Borax mine, Boron, California, near the Dryden/Edwards Air Force Base complex. |
Project Description |
Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Photo Date |
February 21, 2001 |
|
Altamaha River delta, Georgi
The history of sea islands i
3/2/01
Date |
3/2/01 |
Description |
The history of sea islands in the Altamaha River delta on the coast of Georgia is revealed in this image produced from data acquired by the Airborne Synthetic Aperture Radar (AIRSAR), developed and operated by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The outlines of long-lost plantation rice fields, canals, dikes and other inlets are clearly defined. Salt marshes are shown in red, while dense cypress and live oak tree canopies are seen in yellow-greens. Agricultural development of the Altamaha delta began soon after the founding of the Georgia Colony in 1733. About 25 plantations were located on the low-lying islands and shores by the 19th century, taking advantage of the rich alluvial flow and annual inundation of water required by some crops. The first major crop was indigo, when demand for that faded, rice and cotton took its place. A major storm in 1824 destroyed much of the town of Darien (upper right) and put many of the islands under 20 feet of water. The Civil War ended the plantation system, and many of the island plantations disappeared under heavy brush and new growth pine forests. Some were used as tree farms for paper and pulp industries, while the Butler Island (center left) plantation became a wildlife conservation site growing wild sea rice for migrating ducks and other water fowl. Margaret Mitchell is reputed to have used the former owner of the Butler Plantation as a basis for the Rhett Butler character in her novel "Gone With The Wind," taking the first name from Rhett's Island (lower right). These data were obtained during a 1994-95 campaign along the Georgia coast. AIRSAR's ability to detect vegetation canopy density, hydrological features and other topographic characteristics is a useful tool in landscape archaeology. AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. The analysis on the data shown was accomplished by Dr. Gary McKay, Department of Archaeology and Geography, and Ian Morrison, Department of Archaeology, both of the University of Edinburgh (Scotland). AIRSAR is part of NASA's Earth Enterprise program. JPL is managed by the California Institute of Technology, Pasadena. More information about AIRSAR is available at http://airsar.jpl.nasa.gov . Imaging radar information is at http://southport.jpl.nasa.gov . Dr. McKay's activities can be accessed at http://www.arcl.ed.ac.uk/arch.remotesense.index.html . |
|
Smoke generators show the tw
Photo Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. |
Project Description |
Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Photo Date |
November 9, 2001 |
|
Smoke generators show the tw
Photo Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. |
Project Description |
Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Photo Date |
November 9, 2001 |
|
Smoke generators show the tw
Photo Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. |
Project Description |
Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Photo Date |
November 9, 2001 |
|
This unique view, looking di
Photo Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. |
Project Description |
Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Photo Date |
November 9, 2001 |
|
NASA Connect - The Future of
NASA Connect Video containin
11/1/01
Description |
NASA Connect Video containing six segments as described below. NASA Connect segment involving students in a web activity that teaches how to use different shapes to design different aircraft. The segment also features an online tutorial for instruction in technology. NASA Connect segment exploring the current situation of commercial flight and what kinds of new technology is in place to help pilots today. NASA Connect segment explaining the tools, techniques, and requirements of designing an aircraft. The segment also explains the importance in wind tunnels and model planes. NASA Connect segment exploring the future of aircraft such as NASA's new experimental plane, the Hyper X with a scram jet. NASA Connect segment involving students in a web activity featuring the Plane Math Website to teach students about aeronautical principles, geometric and algebraic math concepts, and aircraft design. NASA Connect segment exploring the process of flight testing. The segment features the Hyper-X and answers questions pertaining to its test stage. |
Date |
11/1/01 |
|
A modified F/A-18A undergoes
Photo Date |
April 10, 2001 |
|
Structural loads testing on
Photo Date |
March 15, 2001 |
|
This modified F/A-18A with i
Project Description |
The Active Aeroelastic Wing project at NASA's Dryden Flight Research Center is a two-phase flight research program that is investigating the potential of aerodynamically twisting flexible wings to improve roll maneuverability of high-performance aircraft at transonic and supersonic speeds. Traditional control surfaces such as ailerons and leading-edge flaps are used as active trim tabs to aerodynamically induce the twist. From flight test and simulation data, the program is developing structural modeling techniques and tools to help design lighter, more flexible high aspect-ratio wings for future high-performance aircraft, which could translate to more economical operation or greater payload capability. The program uses a modified F/A-18A Hornet as its testbed aircraft, with wings that were modified to the flexibility of the original pre-production F-18 wing. Other aircraft modifications include a new actuator to operate the outboard portion of a divided leading edge flap over a greater range and rate, and a research flight control system to host the aeroelastic wing control laws. AAW flight tests began in November, 2002 with checkout and parameter-identification flights. Based on data obtained during 50 research flights over a five-month period, new AAW flight control software was then developed over the following year. A second series of research flights began in late 2004 evaluated the AAW concept in a real-world flight environment, using the newly created control laws in the aircaft's research flight control computer. About 45 research missions were flown over a four-month period in the second phase of flight testing that concluded in March, 2005. Extensive analysis of data acquired during the project is continuing at NASA Dryden. The Active Aeroelastic Wing Program is jointly funded and managed by the Air Force Research Laboratory and NASA Dryden Flight Research Center, with Boeing's Phantom Works as prime contractor for wing modifications and flight control software development. The F/A-18A aircraft was provided by the Naval Aviation Systems Test Team and modified for its research role by NASA Dryden technicians. |
Photo Date |
October 24, 2001 |
|
The X-43A hypersonic researc
Photo Date |
March 15, 2001 |
|
NASA space shuttle Columbia
NASA space shuttle Columbia
NASA space shuttle Columbia
The X-43A hypersonic researc
Photo Date |
March 15, 2001 |
|
NASA engineer Wayne Peterson
Photo Date |
December 13, 2001 |
|
X-40A seventh free flight
Photo Description |
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees. |
Project Description |
unknown |
Photo Date |
July 25, 2001 |
|
Photo Description |
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees. |
Project Description |
unknown |
Photo Date |
July 25, 2001 |
|
Two F/A-18B aircraft involve
Photo Description |
After completing a milestone autonomous station-keeping formation, two F/A-18B aircraft from the NASA Dryden Flight Research Center, Edwards, California, return to base in close formation with the autonomous function disengaged. For the milestone, the aircraft were spaced approximately 200 feet nose-to-tail and 50 feet apart laterally and vertically. Autonomous formation control was maintained by the trailing aircraft, the Systems Research Aircraft (SRA), in the lateral and vertical axes to within five feet of the commanded position. Nose-to-tail separation of the aircraft was controlled by manual throttle inputs by the trailing aircraft's pilot. The milestone was accomplished on the seventh flight of a 12 flight phase. The AFF flights were a first for a project under NASA's Revolutionary (RevCon) in Aeronautics Project. Dryden is the lead NASA center for RevCon, an endeavor to accelerate the exploration of high-risk, revolutionary technologies in atmospheric flight. Automated formation flight could lead to formation fuel efficiencies and higher air traffic capacity. |
Project Description |
Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Photo Date |
February 21, 2001 |
|
B-52 Mothership taking off w
B-52 touch and go landing
B-52B Shuttle Drag Chute Tes
The Aerostructures Test Wing
Photo Date |
March 28, 2001 |
|
NASA Dryden's new in-house d
Photo Date |
November 30, 2001 |
|
NASA Dryden's new in-house d
Photo Date |
November 30, 2001 |
|
X-43A hypersonic research ai
Photo Description |
The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus? booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. |
Project Description |
FIRST X-43A MATED TO BOOSTER -- The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus? booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. Mating of the X-43A and its specially-designed adapter to the first stage of the booster rocket marks a major milestone in the Hyper-X hypersonic research program. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., for NASA. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer of 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine. |
Photo Date |
January 22, 2001 |
|
Head-on view showing the X-4
Photo Description |
This head-on view shows the first of three X-43A hypersonic research aircraft (foreground) after it was mated to its modified Pegasus? booster rocket (rear) in late January at NASA's Dryden Flight Research Center, Edwards, Calif. |
Project Description |
FIRST X-43A MATED TO BOOSTER -- This head-on view shows the first of three X-43A hypersonic research aircraft (foreground) after it was mated to its modified Pegasus? booster rocket (rear) in late January at NASA's Dryden Flight Research Center, Edwards, Calif. Mating of the X-43A and its specially-designed adapter to the first stage of the booster rocket marks a major milestone in the Hyper-X hypersonic research program. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., for NASA. The booster, built by Orbital Sciences Corp., Dulles, Va.,will accelerate the X-43A after the X-43A booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer, 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine. |
Photo Date |
January 22, 2001 |
|
The X-38 prototype of the Cr
Photo Date |
December 13, 2001 |
|
The X-38 Vehicle 131R drops
Photo Date |
December 13, 2001 |
|
The 247-foot length of the H
Photo Date |
April 28, 2001 |
|
The Helios Prototype flying
F-8 DFBW with test pilot Gar
Photo Description |
The sun begins to break through the clouds over NASA's two 747 Shuttle Carrier Aircraft on the NASA Dryden ramp after a rain shower in February 2001. |
Project Description |
NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing "jumbo jets" that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are: - Three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached - Two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability - Removal of all interior furnishings and equipment aft of the forward No. 1 doors - Instrumentation used by SCA flight crews and engineers to monitor orbiter electrical loads during the ferry flights and also during pre- and post-ferry flight operations. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Tex. NASA 905 NASA 905 was the first SCA. It was obtained from American Airlines in 1974. Shortly after it was accepted by NASA it was flown in a series of wake vortex research flights at the Dryden Flight Research Center in a study to seek ways of reducing turbulence produced by large aircraft. Pilots flying as much as several miles behind large aircraft have encountered wake turbulence that have caused control problems. The NASA study helped the Federal Aviation Administration modify flight procedures for commercial aircraft during airport approaches and departures. Following the wake vortex studies, NASA 905 was modified by Boeing to its present SCA configuration and the aircraft was returned to Dryden for its role in the 1977 Space Shuttle Approach and Landing Tests (ALT). This series of eight captive and five free flights with the orbiter prototype Enterprise, in addition to ground taxi tests, validated the aircraft's performance as an SCA, in addition to verifying the glide and landing characteristics of the orbiter configuration -- paving the way for orbital flights. A flight crew escape system, consisting of an exit tunnel extending from the flight deck to a hatch in the bottom of the fuselage, was installed during the modifications. The system also included a pyrotechnic system to activate the hatch release and cabin window release mechanisms. The flight crew, escape system was removed from the NASA 905 following the successful completion of the ALT program. NASA 905 was the only SCA used by the space shuttle program until November 1990, when NASA 911 was delivered as an SCA. Along with ferrying Enterprise and the flight-rated orbiters between the launch and landing sites and other locations, NASA 905 also ferried Enterprise to Europe for display in England and at the Paris Air Show. NASA 911 The second SCA is designated NASA 911. It was obtained by NASA from Japan Airlines (JAL) in 1989. It was also modified by Boeing Corporation. It was delivered to NASA 20 November 1990. |
Photo Date |
February 13, 2001 |
|
The second X-43A hypersonic
Photo Date |
January 31, 2001 |
|
The Aerostructures Test Wing
Photo Date |
April 24, 2001 |
|
The X-43A hypersonic researc
Photo Date |
March 13, 2001 |
|
Research pilot Mark Pestana
Photo Date |
April 16, 2001 |
|
AFTI/F-16
Photo Description |
The AFTI F-16 in its final configuration, flying in the vicinity of Edwards Air Force Base, California. During this phase, the two forward infrared turrets were added ahead of the cockpit, the chin canards were removed, and the aircraft was repainted in a standard Air Force scheme. A fuel drop tank is visible below the wing. |
Project Description |
During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001. |
Photo Date |
Oct 1992 |
|
X-33 Simulation Flown by Ste
Photo Description |
Steve Ishmael flies a simulation of the X-33 Advanced Technology Demonstrator at NASA's Dryden Flight Research Center, Edwards, California. This simulation was used to provide flight trajectory data while flight control laws were being designed and developed, as well as to provide aerodynamic design information to X-33 developer Lockheed Martin. The X-33 program was a government/industry effort to design, build and fly a half-scale prototype that would have demonstrate in flight the new technologies needed for the proposed Lockheed Martin full-scale VentureStar Reusable Launch Vehicle. |
Project Description |
The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. The X-33 design was based on a lifting body shape with two revolutionary "linear aerospike" rocket engines and a rugged metallic thermal protection system. The vehicle also was to have used lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was planned to normally be seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 Program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Technical problems with the X-33's composite liquid hydrogen tank resulted in the program being cancelled in February 2001. |
Photo Date |
May 1997 |
|
Linear Aerospike SR-71 Exper
Photo Description |
The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST."I think all in all we had a good mission today," Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew "thought it was a really good flight." Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, "We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE." |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
March 4, 1998 |
|
NASA's NB-52B carrier aircra
Photo Date |
March 15, 2001 |
|
NASA's NB-52B carrier aircra
Photo Date |
March 15, 2001 |
|
Linear Aerospike SR-71 Exper
Photo Description |
This photograph shows a ground cold flow test of the linear aerospike rocket engine mounted on the rear fuselage of an SR-71. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
February 12, 1998 |
|
X-43A departs NASA Dryden Fl
Photo Description |
The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. |
Project Description |
The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or "scramjet" engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean. |
Photo Date |
June 2, 2001 |
|
LASRE pod being mated to SR-
Photo Description |
This is a head-on view of the NASA-Dryden Flight Research Center (DFRC) SR-71 with the Linear Aerospike SR Experiment (LASRE) pod held over it's attachment points on the aircraft for a fit-check. The fit-check occurred Feb. 15, 1996, at Lockheed Martin Skunkworks in Palmdale, Cailfornia. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
15 Feb 1996 |
|
LASRE pod being mated to SR-
Photo Description |
These workers are performing a fit-check of the Linear Aerospike SR-71 Experiment (LASRE) on the back of a NASA Dryden Flight Research Center SR-71. The fit-check occurred Feb. 15, 1996, at Lockheed Martin Skunkworks in Palmdale, California. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
15 Feb 1996 |
|
SR-71 #844 with LASRE pod pa
Photo Description |
The Linear Aerospike SR-71 Experiment is seen here almost ready for its first flight aboard NASA's SR-71 No. 844. The initial test flight took place on 31 October 1997. The experiment was mounted on the SR-71 on Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
Aug 1997 |
|
SR-71 with LASRE pod parked
Photo Description |
A NASA SR-71A with the Linear Aerospike SR-71 Experiment mounted parks beside a NASA SR-71B trainer aircraft. The linear aerospike experiment was mounted on the SR-71 No. 844 on Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California, in preparation for its first flight, which took place on 31 October 1997. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
Aug 1997 |
|
SR-71 being towed to hangar
Photo Description |
NASA's SR-71 is being towed to its hangar with the Linear Aerospike SR-71 Experiment installed. The experiment was mounted on the SR-71 on Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California, in preparation for its first flight. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
Aug 1997 |
|
Linear Aerospike SR-71 Exper
Photo Description |
A NASA SR-71 made its successful first flight Oct. 31 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
October 31, 1997 |
|
Linear Aerospike SR-71 Exper
Photo Description |
A NASA SR-71 refuels with an Edwards Air Force Base KC-135 during the first flight of the NASA/Rocketdyne/ Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE). The flight took place Oct. 31 at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
October 31, 1997 |
|
Linear Aerospike SR-71 Exper
Photo Description |
A NASA SR-71 made its successful first flight Oct. 31 as part of the NASA/Rocketdyne/ Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
October 31, 1997 |
|
Linear Aerospike SR-71 Exper
Photo Description |
A NASA SR-71 takes off Oct. 31, making its first flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
October 31, 1997 |
|
LASRE pod being mated to SR-
Photo Description |
The Linear Aerospike SR-71 Experiment is mounted on a NASA SR-71 aircraft Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California, in preparation for the experiment's first flight, which took place on 31 October 1997. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
Aug 1997 |
|
Linear Aerospike SR-71 Exper
Photo Description |
A NASA SR-71 successfully completed its first flight 31 October 1997 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
October 31, 1997 |
|
Linear Aerospike SR-71 Exper
Photo Description |
A NASA SR-71 successfully completed its first flight 31 October 1997 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
October 31, 1997 |
|
The five crew members of the
Title |
The five crew members of the Space Shuttle Atlantis on the STS-98 mission depart NASA Dryden to retu |
Description |
The five crew members of the Space Shuttle Atlantis on the STS-98 mission depart NASA Dryden to return to the Johnson Space Center at Houston. They briefly extended greetings to Dryden staff members on the ramp area behind Dryden's Main Building at a crew ceremony on February 21, 2001. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000. |
Date |
02.21.2001 |
|
The X-43A/Pegasus combinatio
Photo Description |
The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. |
Project Description |
The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or "scramjet" engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean. |
Photo Date |
June 2, 2001 |
|
Moments after release from N
Photo Description |
The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. |
Project Description |
The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or "scramjet" engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean. |
Photo Date |
June 2, 2001 |
|
Ignition of the Pegasus rock
Photo Description |
The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. |
Project Description |
The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or "scramjet" engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean. |
Photo Date |
June 2, 2001 |
|
DC-8 Flying Laboratory mount
X-33 by Lockheed Martin abov
Photo Description |
This artist's rendering depicts the NASA/Lockheed Martin X-33 technology demonstrator for a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) at high altitude. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would improve U.S. economic competitiveness. |
Project Description |
The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. The X-33 design was based on a lifting body shape with two revolutionary "linear aerospike" rocket engines and a rugged metallic thermal protection system. The vehicle also was to have used lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program had hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was designed to reach altitudes of up to 50 miles and high hypersonic speeds. The X-33 Program was managed by the Marshall Space Flight Center and would have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the vehicle's composite liquid hydrogen tanks, the X-33 program was cancelled in February 2001. |
Photo Date |
July 1996 |
|
LASRE pod being mated to SR-
Photo Description |
The addition of the Linear Aerospike SR Experiment (LASRE) pod to NASA's SR-71, tail number 844, added seven tons to the aircraft. This Feb. 15, 1996 photo of the pod's fit-check at the Lockheed Martin Skunkworks in Palmdale, California, shows the LASRE package being hoisted above the aircraft, which has it's right engine pod and the attached wing up. The SR-71's engines, tails, and various other parts are removed for refurbishment. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
15 Feb 1996 |
|
LASRE pod being mated to SR-
Photo Description |
This is a rear/side view of the Linear Aerospike SR Experiment (LASRE) pod on NASA SR-71, tail number 844. This photo was taken during the fit-check of the pod on Feb. 15, 1996, at Lockheed Martin Skunkworks in Palmdale, California. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
15 Feb 1996 |
|
SR-71 wind tunnel scale mode
Photo Description |
This is a photo of the SR-71 scale wind tunnel model showing the Linear Aerospike SR Experiment (LASRE) pod attachment location. The model was on display for the LASRE fit-check at the Lockheed Martin Skunkworks on Feb. 15, 1996, in Palmdale, California. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
15 Feb. 1996 |
|
LASRE pod being mated to SR-
Photo Description |
This Feb. 15, 1996 photo shows the Linear Aerospike SR Experiment (LASRE) pod on the back of a NASA SR-71. Pictured is the half-span lifting body model and linear aerospike rocket engine (white portion), which are sitting on the deflection plate that separates the experiment from the canoe (long black shape). The canoe held propellant tanks and instrumentation equipment, and serves as the mount for the experiment. The entire pod weighed just under seven tons. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
15 Feb 1996 |
|
Closeup of rear of LASRE pod
Photo Description |
This rear view of the Linear Aerospike SR Experiment (LASRE) pod shows the business end of the linear aerospike rocket engine prior to the experiment's fit-check on Feb. 15, 1996, at Lockheed Martin Skunkworks in Palmdale, California. One of the differences between linear aerospike and traditional rocket engines is that the linear aerospike utilizes the airflow around the engine to form the outer "nozzle." There is no bell-shaped nozzle as is commonly seen on most rocket engines. The engine is made of a high strength copper alloy called NARloy-Z. The white curved ramps next to the copper area pictured act as the inner half of the engine's "nozzle." There are four thrusters (copper area) on each side of the engine for a total of eight which combine the fuel, oxidizer, and ignition source for the engine. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
15 Feb 1996 |
|
Linear Aerospike SR-71 Exper
Photo Description |
This photograph shows the LASRE pod on the upper rear fuselage of an SR-71 aircraft during take-off of the first flight to experience an in-flight cold flow test. The flight occurred on 4 March 1998. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
4 Mar 1998 |
|
Linear Aerospike SR-71 Exper
Photo Description |
This photograph shows the SR-71 with the Linear Aerospike SR-71 Experiment on the rear fuselage as seen from above. The photo was taken on the first flight of the aircraft with the experiment aboard, which took place on 31 October 1997. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
October 31, 1997 |
|
AFTI/F-16 Air probe close-up
Photo Description |
This close-up view shows the AFTI F-16 air probe early in the research program. It consists of a nose boom resembling a long pipe, and four indicators that look and act like weather vanes. The indicators on the left and right measure pitch, or the movement of the airplane's nose up or down. Those on the top and bottom of the boom measure yaw, or movement of the nose to the left or right. Similar probes are standard on most research and prototype aircraft. The data from the indicators is recorded aboard the aircraft and/or radioed to the ground. This data includes both the amount of yaw and pitch at any given time, and the rate at which both motions changed in flight. This information, subsequently processed and compared to wind tunnel results, may reveal stability and aerodynamic abnormalities. The two metal half-circles and their attachment fixtures are not part of the air probe. Rather, they are used to calibrate the indicators on the ground, enabling the data to be corrected for instrument errors. The figure in the photograph is shown holding a red "Remove Before Flight" ribbon, a reminder to the ground crew that it must be taken off prior to a research mission. |
Project Description |
During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001. |
Photo Date |
October 28, 1982 |
|
DARPA, U.S. Air Force, Boein
Title |
DARPA, U.S. Air Force, Boeing X-45A UCAV at NASA Dryden |
Description |
DARPA, U.S. Air Force, Boeing X-45A UCAV (Unmanned Combat Air Vehicle) at NASA Dryden Flight Research Center. |
Date |
10.24.2001 |
|
Smoke generators show the tw
Title |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in |
Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Date |
11.09.2001 |
|
Smoke generators show the tw
Title |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in |
Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Date |
11.09.2001 |
|
Smoke generators show the tw
Title |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in |
Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Date |
11.09.2001 |
|
Smoke generators show the tw
Title |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in |
Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Date |
11.09.2001 |
|
This unique view, looking di
Title |
This unique view, looking directly up at two NASA Dryden F/A-18's used in the Autonomous Formation F |
Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18's used in the Autonomous Formation Flight (AFF) program during flight #743. The lead aircraft, F-18 #845 (NASA Dryden's Systems Research Aircraft), piloted by Craig Bomben, is followed closely by another F-18, #847, piloted by Dick Ewers. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Date |
11.09.2001 |
|
A B-52H, on loan to NASA's D
Title |
A B-52H, on loan to NASA's Dryden Flight Research Center, makes a pass down the runway prior to land |
Description |
NASA Dryden Flight Research Center, Edwards, California, received an "H" model B-52 Stratofortress aircraft on July 30, 2001. The B-52H will be used as an air-launch aircraft supporting NASA's flight research and advanced technology demonstration efforts. Dryden received the B-52H from the U.S. Air Force's (USAF) 23rd Bomb Squadron, 5th Bombardment Wing (Air Combat Command), located at Minot AFB, N.D. A USAF crew flew the aircraft to Dryden. The aircraft, USAF tail number 61-0025, will be loaned initially, then later transferred from the USAF to NASA. The B-52H is scheduled to leave Dryden Aug. 2 for de-militarization and Programmed Depot Maintenance (PDM) at Tinker Air Force Base (AFB), Oklahoma. The depot-level maintenance is scheduled to last about six months and includes a thorough maintenance and inspection process. The newly arrived B-52H is slated to replace Dryden's famous B-52B "008," in the 2003-2004 timeframe. It will take about one year for the B-52H to be ready for flight research duties. This time includes PDM, construction of the new pylon, installation of the flight research instrumentation equipment, and aircraft envelope clearance flights. |
Date |
07.30.2001 |
|
A B-52H, tail number 61-0025
Title |
A B-52H, tail number 61-0025, arrives at NASA's Dryden Flight Research Center after landing July 30, |
Description |
NASA Dryden Flight Research Center, Edwards, California, received an "H" model B-52 Stratofortress aircraft on July 30, 2001. The B-52H will be used as an air-launch aircraft supporting NASA's flight research and advanced technology demonstration efforts. Dryden received the B-52H from the U.S. Air Force's (USAF) 23rd Bomb Squadron, 5th Bombardment Wing (Air Combat Command), located at Minot AFB, N.D. A USAF crew flew the aircraft to Dryden. The aircraft, USAF tail number 61-0025, will be loaned initially, then later transferred from the USAF to NASA. The B-52H is scheduled to leave Dryden Aug. 2 for de-militarization and Programmed Depot Maintenance (PDM) at Tinker Air Force Base (AFB), Oklahoma. The depot-level maintenance is scheduled to last about six months and includes a thorough maintenance and inspection process. The newly arrived B-52H is slated to replace Dryden's famous B-52B "008," in the 2003-2004 timeframe. It will take about one year for the B-52H to be ready for flight research duties. This time includes PDM, construction of the new pylon, installation of the flight research instrumentation equipment, and aircraft envelope clearance flights. |
Date |
07.30.2001 |
|
A B-52H, tail number 61-0025
Title |
A B-52H, tail number 61-0025, arrives at NASA's Dryden Flight Research Center after landing July 30, |
Description |
NASA Dryden Flight Research Center, Edwards, California, received an "H" model B-52 Stratofortress aircraft on July 30, 2001. The B-52H will be used as an air-launch aircraft supporting NASA's flight research and advanced technology demonstration efforts. Dryden received the B-52H from the U.S. Air Force's (USAF) 23rd Bomb Squadron, 5th Bombardment Wing (Air Combat Command), located at Minot AFB, N.D. A USAF crew flew the aircraft to Dryden. The aircraft, USAF tail number 61-0025, will be loaned initially, then later transferred from the USAF to NASA. The B-52H is scheduled to leave Dryden Aug. 2 for de-militarization and Programmed Depot Maintenance (PDM) at Tinker Air Force Base (AFB), Oklahoma. The depot-level maintenance is scheduled to last about six months and includes a thorough maintenance and inspection process. The newly arrived B-52H is slated to replace Dryden's famous B-52B "008," in the 2003-2004 timeframe. It will take about one year for the B-52H to be ready for flight research duties. This time includes PDM, construction of the new pylon, installation of the flight research instrumentation equipment, and aircraft envelope clearance flights. |
Date |
07.30.2001 |
|
B-52/Pegasus with X-43A depa
Title |
B-52/Pegasus with X-43A departing on first captive flight. |
Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A "stack" as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds. |
Date |
04.28.2001 |
|
B-52/Pegasus with X-43A in f
Title |
B-52/Pegasus with X-43A in flight over Pacific Ocean. |
Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A "stack" as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds. |
Date |
04.28.2001 |
|
B-52/Pegasus with X-43A land
Title |
B-52/Pegasus with X-43A landing after first captive carry flight. |
Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A "stack" as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds. |
Date |
04.28.2001 |
|
Close view of B-52/Pegasus w
Title |
Close view of B-52/Pegasus with X-43A in flight. |
Description |
The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A "stack" as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds. |
Date |
04.28.2001 |
|
X-43A/Hyper-X first launch
A modified F/A-18A undergoes
Title |
A modified F/A-18A undergoes wing torsion testing in the Flight Dynamics Laboratory at NASA's Dryden |
Description |
A modified F/A-18A undergoes wing torsion or twist testing in the Flight Dynamics Laboratory at NASA's Dryden Flight Research Center, Edwards, California. The tests simulate the amount of twisting that the wing might encounter during flight in the Active Aeroelastic Wing (AAW) flight research project at Dryden. During the tests, powerful hydraulic jacks attached to a fixture mounted on the tip of the F/A-18's left wing literally twist the wing to determine its flexibility, while numerous strain gauges and other devices record the stresses on the wing structure. |
Date |
04.10.2001 |
|
First flight at NASA's Dryde
Title |
First flight at NASA's Dryden Flight Research Center for the X-40A was a 74 second glide from 15,000 |
Description |
First flight at NASA's Dryden Flight Research Center for the X-40A was a 74 second glide from 15,000 feet on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies. |
Date |
03.14.2001 |
|
The Space Shuttle Atlantis c
Title |
The Space Shuttle Atlantis centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research |
Description |
The Space Shuttle Atlantis is centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center at Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000. |
Date |
02.26.2001 |
|
L to R: STS-98 Mission Speci
Title |
L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell |
Description |
L to R: STS-98 Mission Specialist Thomas Jones, Pilot Mark Polansky, and Commander Kenneth Cockrell greet STS-92 Commander Brian Duffy, Dryden Center Director Kevin Petersen, and AFFTC Commander Major General Richard Reynolds after landing on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000. |
Date |
02.20.2001 |
|
Wranglers steadied the X-40A
Title |
Wranglers steadied the X-40A at NASA's Dryden Flight Research Center, Edwards, California, March 14, |
Description |
Wranglers steadied the X-40A at NASA's Dryden Flight Research Center, Edwards, California, March 14, 2001, as the experimental craft was carried to 15,000 feet for an unpiloted glide flight. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies. |
Date |
03.14.2001 |
|
Aerial photo of NASA Dryden
Title |
Aerial photo of NASA Dryden Flight Research Center with the Endeavour Space Shuttle and 747 Shuttle |
Description |
Aerial photo of NASA Dryden Flight Research Center with the Endeavour Space Shuttle and 747 Shuttle Carrier Aircraft taxiing on ramp. |
Date |
05.01.2001 |
|
Two F-18s in Autonomous Form
Title |
Two F-18s in Autonomous Formation Flight |
Description |
This 32 second video clip shows two F-18s in NASA's Autonomous Formation Flight (AFF) program. The aircraft use smoke contrails to gather data on wingtip vortices. Flight research attempts to utilize the energy in the vortices for more efficient flight. |
Date |
09.01.2001 |
|
Two F-18s in Autonomous Form
A modified F/A-18A sporting
Title |
A modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for |
Description |
A modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California. |
Date |
10.24.2001 |
|
NASA DFRC Lear 24 in flight
Title |
NASA DFRC Lear 24 in flight |
Description |
NASA Dryden Flight Research Center's Lear 24, tail number 805, in flight. The Lear 24 was modified as an airborne test aircraft, but on June 7, 2001, it was involved in a landing accident at Victorville. The crew was not hurt, but the aircraft was damaged beyond economical repair. |
Date |
10.30.1998 |
|
Space Shuttle Endeavour touc
Title |
Space Shuttle Endeavour touches down on the runway at Edwards Air Force Base, California |
Description |
Space Shuttle Endeavour's tires produced a momentary puff of smoke as Mission STS-100 landed at NASA's Dryden Flight Research Center on Edwards Air Force Base, California, May 1, 2001. |
Date |
05.01.2001 |
|
This modified F/A-18A is the
Title |
This modified F/A-18A is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's D |
Description |
This modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California. |
Date |
10.24.2001 |
|
This modified F/A-18A with i
Title |
This modified F/A-18A with its distinctive red, white and blue paint scheme is the test aircraft for |
Description |
This modified F/A-18A with its distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California. |
Date |
10.24.2001 |
|
With a long flight data prob
Title |
With a long flight data probe extending from its nose, this F/A-18A has been modified to conduct fli |
Description |
With a long flight data probe extending from its nose, this F/A-18A has been modified to conduct flight research in the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California. |
Date |
10.24.2001 |
|
Crew of STS-98, L to R: Miss
Title |
Crew of STS-98, L to R: Mission Specialists Robert L. Curbeam, Thomas D. Jones, and Marsha S. Ivins, |
Description |
The crew of STS-98 poses for a group photo shortly before leaving NASA's Dryden Flight Research Center after a successful landing of the Space Shuttle Atlantis the day before. L to R: Mission Specialists Robert L. Curbeam, Thomas D. Jones, and Marsha S. Ivins, Commander Kenneth D. Cockrell, and Pilot Mark L. Polansky. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000. |
Date |
02.21.2001 |
|
Smoke generators show the tw
Title |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18 jets used |
Description |
Smoke generators show the twisting paths of wingtip vortices behind two NASA Dryden F/A-18 jets used in the Autonomous Formation Flight (AFF) program. A vortex is a spiraling current of air emanating from aircraft wingtips as they fly. By mapping the vortex pattern and using sophisticated software to put the trailing aircraft in the optimum location, the energy of the vortex could result in fuel savings for the follower aircraft of 15 percent or more. |
Date |
11.09.2001 |
|
Space Shuttle Atlantis/STS-9
Title |
Space Shuttle Atlantis/STS-98 shortly before being towed to NASA's Dryden Flight Research Center. |
Description |
Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000. |
Date |
02.20.2001 |
|
Engineers Jim Murray and Joe
Title |
Engineers Jim Murray and Joe Pahle prepare a deployable, inflatable wing technology demonstrator exp |
Description |
Engineers Jim Murray and Joe Pahle prepare a deployable, inflatable wing technology demonstrator experiment flown by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings "popped-out," deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control. |
Date |
04.25.2001 |
|
Flying an Autonomous Formati
Title |
Flying an Autonomous Formation Flight mission, two F/A-18s from the NASA Dryden Flight Research Cent |
Description |
Flying an Autonomous Formation Flight mission, two F/A-18's from the NASA Dryden Flight Research Center, Edwards, California, gain altitude near Rogers Dry Lake. The Systems Research Aircraft (tail number 845) and F/A-18 tail number 847 are flying the second phase of a project that is demonstrating a 15-percent fuel savings of the trailing aircraft during cruise flight. Project goal was a 10-percent savings. The drag-reduction study mimics the formation of migrating birds. Scientists have known for years that the trailing birds require less energy than flying solo. |
Date |
09.20.2001 |
|
The Aerostructures Test Wing
Title |
The Aerostructures Test Wing (ATW), which consisted of an 18-inch carbon fiber test wing with surfac |
Description |
A flight experiment called conducted at NASA's Dryden Flight Research Center, Edwards, Calif., successfully demonstrated a new software data analysis tool, the flutterometer, which is designed to increase the efficiency of flight flutter testing. The photo shows the experiment, which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators. The test wing was mounted on a special ventral flight test fixture and flown on Dryden's F-15B Research Testbed aircraft. Five flights consisted of increasing speeds and altitudes leading to the final test point of Mach .85 at an altitude of 10,000 feet. At each Mach and altitude, stability estimations of the wing were made using accelerometer measurements in response to the piezoelectric actuator excitation. The test wing was intentionally flown to the point of structural failure, resulting in about a third of the 18-inch wing breaking off. This allowed engineers to record the effectiveness of the flutterometer over the entire regime of flutter testing, up to and including structural failure. Research objectives of the ATW experiment included validation of the new flutterometer, validation of aerodynamic load predictions on the test wing, and analytical strain gage calibration techniques. |
Date |
03.28.2001 |
|
The deployable, inflatable w
Title |
The deployable, inflatable wing technology demonstrator experiment aircraft looks good during a flig |
Description |
The deployable, inflatable wing technology demonstrator experiment aircraft looks good during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings "popped-out," deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control. |
Date |
04.25.2001 |
|
The deployable, inflatable w
Title |
The deployable, inflatable wing technology demonstrator experiment aircraft maintains a steady attit |
Description |
The deployable, inflatable wing technology demonstrator experiment aircraft maintains a steady attitude following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings "popped-out," deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control. |
Date |
04.25.2001 |
|
The I2000, a deployable, inf
Title |
The I2000, a deployable, inflatable wing technology demonstrator experiment aircraft, leaves the gro |
Description |
The deployable, inflatable wing technology demonstrator experiment aircraft leaves the ground during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings "popped-out," deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control. |
Date |
04.25.2001 |
|
The X-40A immediately after
Title |
The X-40A immediately after release from its harness suspended from a helicopter 15,000 feet above N |
Description |
The X-40A immediately after release from its harness suspended from a helicopter 15,000 feet above NASA's Dryden Flight Research Center at Edwards Air Force Base, California, on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies. |
Date |
03.14.2001 |
|
Two NASA Dryden F/A-18's lan
Title |
Two NASA Dryden F/A-18's land on the Edwards Air Force Base runway after completion of an Autonomous |
Description |
Two NASA Dryden F/A-18's land on the Edwards Air Force Base runway after completion of an Autonomous Formation Flight (AFF) mission. The goal of the AFF project is to demonstrate sustained 10 percent fuel savings by the trailing aircraft during cruise flight. Data suggests savings as high as 15 percent are achievable. |
Date |
09.20.2001 |
|
Inflatable Wing project pers
Title |
Inflatable Wing project personnel prepare a deployable, inflatable wing technology demonstrator expe |
Description |
Inflatable Wing project personnel prepare a deployable, inflatable wing technology demonstrator experiment flown by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings "popped-out," deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control. |
Date |
04.25.2001 |
|
Wing Deployment Sequence #1:
Title |
Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment airc |
Description |
Wing Deployment Sequence #1: The deployable, inflatable wing technology demonstrator experiment aircraft's wings begin deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings "popped-out," deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control. |
Date |
04.25.2001 |
|
Wing Deployment Sequence #2:
Title |
Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment airc |
Description |
Wing Deployment Sequence #2: The deployable, inflatable wing technology demonstrator experiment aircraft's wings continue deploying following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings "popped-out," deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control. |
Date |
04.25.2001 |
|
Wing Deployment Sequence #3:
Title |
Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment airc |
Description |
Wing Deployment Sequence #3: The deployable, inflatable wing technology demonstrator experiment aircraft's wings fully deployed during flight following separation from its carrier aircraft during a flight conducted by the NASA Dryden Flight Research Center, Edwards, Californiaornia. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings "popped-out," deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control. |
Date |
04.25.2001 |
|
X-38 sails to a landing at N
Title |
X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001 |
Description |
The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a "lifeboat" to enable a full seven-person station crew to evacuate in an emergency. |
Date |
07.10.2001 |
|
X-40A Free Flight #5
Title |
X-40A Free Flight #5 |
Description |
X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies. |
Date |
05.08.2001 |
|
X-40A Free Flight #5
Title |
X-40A Free Flight #5 |
Description |
X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies. |
Date |
05.08.2001 |
|
X-40A Free Flight #5
Title |
X-40A Free Flight #5 |
Description |
X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies. |
Date |
05.08.2001 |
|
X-40A Free Flight #5
Title |
X-40A Free Flight #5 |
Description |
X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies. |
Date |
05.08.2001 |
|
F/A-18 Autonomous Formation
NASA Dryden's new in-house d
Title |
NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF) flew mated to a specially- |
Description |
NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the "captive carry" capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a "stand-in" test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this "flying engine test stand. |
Date |
11.30.2001 |
|
NASA Dryden's new in-house d
Title |
NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF), carried on an F-15B's cen |
Description |
NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the "captive carry" capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a "stand-in" test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this "flying engine test stand. |
Date |
11.30.2001 |
|
Two F/A-18B aircraft involve
Title |
Two F/A-18B aircraft involved in the AFF program return to base in close formation with the autonomo |
Description |
After completing a milestone autonomous station-keeping formation, two F/A-18B aircraft from the NASA Dryden Flight Research Center, Edwards, California, return to base in close formation with the autonomous function disengaged. For the milestone, the aircraft were spaced approximately 200 feet nose-to-tail and 50 feet apart laterally and vertically. Autonomous formation control was maintained by the trailing aircraft, the Systems Research Aircraft (SRA), in the lateral and vertical axes to within five feet of the commanded position. Nose-to-tail separation of the aircraft was controlled by manual throttle inputs by the trailing aircraft's pilot. The milestone was accomplished on the seventh flight of a 12 flight phase. The AFF flights were a first for a project under NASA's Revolutionary (RevCon) in Aeronautics Project. Dryden was the lead NASA center for RevCon, an endeavor to accelerate the exploration of high-risk, revolutionary technologies in atmospheric flight. Automated formation flight could lead to formation fuel efficiencies and higher air traffic capacity. In the background is the U. S. Borax mine, Boron, California, near the Dryden/Edwards Air Force Base complex. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Date |
02.21.2001 |
|
YO-3A parked on ramp
Title |
YO-3A parked on ramp |
Description |
NASA's YO-3A parked on the Dryden ramp. The YO-3A aircraft was originally a Schweizer SGS-2-23 sailplane. During the late 1960s Lockheed modified over a dozen of these sailplanes to create ultra-quiet observation aircraft for use over South Vietnam during the conflict there. This particular YO-3A flew combat missions and was later sold to an airframe and powerplant mechanics school. NASA's Ames Research Center at Mountain Veiw, California, acquired the aircraft from the school in 1978. It restored the YO-3A to flight status and fitted it with wing- and tail-mounted microphones as an accoustic research aircraft. Ames operated it at Edwards Air Force Base for noise measurements of helicopters and tilt rotor aircraft. One set of tests in December 1995 obtained free-flight noise data on the XV-15 tilt rotor. NASA also used the YO-3A for sonic boom measurements of a NASA SR-71 assigned to the Dryden Flight Research Center. NASA transferred the YO-3A to Dryden in December 1997, and as of April 2001 it was in flyable storage there. The designation YO-3A indicates that this aircraft was a pre-production (Y) observation (O) aircraft. Even though the YO-3A saw operational use, the Y designation was never removed. Its 210-horsepower Continental V-6 was modified to reduce noise. The engine was connected to a propeller through a belt-driven reduction system. This reduced the propeller's rotation speed. The propeller blades themselves were made of birch plywood and were wider than standard propellers. The result of these modifications was an aircraft so quiet that its noise was drowned out by the background sounds. |
Date |
06.27.1997 |
|
Linear Aerospike SR-71 Exper
Title |
Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test |
Description |
The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. "I think all in all we had a good mission today," Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew "thought it was a really good flight." Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, "We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE." The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create, drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Date |
03.04.1998 |
|
F-8 DFBW with test pilot Gar
Title |
F-8 DFBW with test pilot Gary E. Krier |
Description |
Former research pilot Gary E. Krier is the Director of Flight Operations of the NASA Dryden Flight Research Center, Edwards, Calif. He was the acting Deputy Director effective June 30, 2001 to September 9, 2001. Until that time he was the Chief Engineer and also the Director of the Systems Management Office at Dryden. He had held the position of Chief Engineer since August 1, 1999, and he was appointed Systems Management Office Director in October 1999. Before August 1999, he had been the Director of the Airborne Science Directorate since August 1998. Prior to assuming this position, Krier headed the Aerospace Projects Directorate from March 1997 to August 1998. He had previously been in charge of the Intercenter Aircraft Operations Directorate at Dryden from 1995 to 1997. From 1992 to 1994, he served as Manager, Operations and Facilities, for the New Launch System at NASA Headquarters, where he developed operational procedures and facilities for the next generation of Expendable Launch Vehicles and participated in policy making for the program. From 1987 to 1992, he held two different management positions at NASA Headquarters relating to Space Shuttle operations. Among other positions he held before that time were Director of the Commercial Development Division, Office of Commercial Programs, at NASA Headquarters (1984-1987), Director of the Aircraft Management Office at NASA Headquarters (1983-1984), and attorney in the Office of the Chief Counsel at Ames Research Center (1982-1983). Earlier in his career, Krier was an aerospace research pilot and engineer at Dryden after first going to work for NASA in 1967. He was the first pilot to fly the F-8 Digital Fly-by-Wire aircraft and the Integrated Propulsion Control System F-111 with digital fuel and inlet control. He was also co-project pilot with Thomas C. McMurtry on the F-8 Supercritical Wing project. In addition, he flew the YF-17 research aircraft and has flown more than 30 types of aircraft ranging from light planes to the B-52 and the triple-sonic YF-12. Before joining NASA, Krier served as an engineer for Pratt & Whitney, Martin Marietta, and Hercules Powder Company. He is the author of 7 technical reports. He earned his B.S. in mechanical engineering at the University of Utah in 1960 and went on to achieve an M.B.A. (with Distinction) from Golden Gate University in 1978 and a J.D. from the UCLA School of Law in 1982. He also completed the Program for Management Development at Harvard University on a NASA Fellowship in 1975. He is a member of the State Bar of California, of the Society of Experimental Test Pilots (for which he served as legal officer in 1989 and continues to serve as legal advisor and scholarship foundation trustee), and the Quiet Birdmen. |
Date |
01.01.1971 |
|
Terra/CERES views the Americ
Title |
Terra/CERES views the Americas in Outgoing Longwave Radiation - Daily data |
Abstract |
Terra/CERES views the Americas in Outgoing Longwave Radiation (March 1, 2000 to May 25, 2001). These are daily data. |
Completed |
2001-06-11 |
|
Terra/CERES views the Americ
Title |
Terra/CERES views the Americas in Reflected Solar Radiation - Daily data |
Abstract |
Terra/CERES views the Americas in Reflected Solar Radiation (March 1, 2000 to May 25, 2001). These are daily data. |
Completed |
2001-06-11 |
|
Terra/CERES Outgoing Longwav
Title |
Terra/CERES Outgoing Longwave and Reflected Solar radiation-Daily data |
Abstract |
Terra/CERES views the world in outgoing longwave radiation (left) and reflected solar radiation (right). This is daily data from March 1, 2000 to May 25, 2001. |
Completed |
2001-06-11 |
|
One Year of Terra/CERES data
Title |
One Year of Terra/CERES data (Outgoing Longwave Radiation) Daily data |
Abstract |
This animation displays one year of Outgoing Longwave Radiation (OLR) Terra/CERES data (March 1, 2000 to May 25, 2001) at one day resolution. The data are 2.5 degree resolution. |
Completed |
2001-06-11 |
|
Terra/CERES on the American
Title |
Terra/CERES on the American Southwest: May 2001 |
Abstract |
Terra/CERES views the American southwest during the heatwave of May 2001. The animation is generated for outgoing longwave radiation (heat). |
Completed |
2001-06-11 |
|
A convoy of specialized supp
Title |
A convoy of specialized support vehicles follow the Space Shuttle Endeavour as it is towed up a taxi |
Description |
A convoy of specialized support vehicles follow the Space Shuttle Endeavour as it is towed up a taxiway at NASA's Dryden Flight Research Center on Edwards Air Force Base, California, after landing on May 1, 2001. The two largest vehicles trailing the shuttle provide electrical power and air conditioning to the shuttle's systems during post-flight recovery operations. The Endeavour had just completed mission STS-100, an almost 12-day mission to install the Canadarm 2 robotic arm and deliver some three tons of supplies and experiments to the International Space Station. The landing was the 48th shuttle landing at Edwards since shuttle flights began in 1981. After post-flight processing, the Endeavour was mounted atop one of NASA's modified Boeing 747 shuttle carrier aircraft and ferried back to the Kennedy Space Center in Florida on May 8, 2001. |
Date |
05.01.2001 |
|
A lone desert Joshua tree gr
Title |
A lone desert Joshua tree greeted the arrival of Space Shuttle Endeavour at Edwards Air Force Base, |
Description |
A lone desert Joshua tree greeted the arrival of Space Shuttle Endeavour at Edwards Air Force Base, California, May 1, 2001. A large drag chute helped slow Endeavour on the runway. After mounting the shuttle on a converted 747 airliner at NASA's Dryden Flight Research Center, Endeavour will be carried back to the Kennedy Space Center for its next mission. Weather in Florida necessitated landing in California. |
Date |
05.01.2001 |
|
A long telephoto lens captur
Title |
A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California |
Description |
A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California, on May 1, 2001. NASA's Dryden Flight Research Center at Edwards would subsequently service the shuttle and mount it on a 747 for the ferry flight to the Kennedy Space Center in Florida. |
Date |
05.01.2001 |
|
A worker attaches covers for
Title |
A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway |
Description |
A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies. |
Date |
03.14.2001 |
|
NASA engineer Wayne Peterson
Title |
NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a |
Description |
NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a spectacular flight of the X-38 prototype for a crew recovery vehicle that may be built for the International Space Station. The X-38 tested atmospheric flight characteristics on December 13, 2001, in a descent from 45,000 feet to Rogers Dry Lake at the NASA Dryden Flight Research Center/Edwards Air Force Base complex in California. |
Date |
12.13.2001 |
|
NASA space shuttle Columbia
Title |
NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Pal |
Description |
NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Palmdale, California, to Kennedy Space Center, Florida, on March 1, 2001. A half hour behind Columbia's takeoff, the shuttle Atlantis departed the NASA Dryden Flight Research Center at Edwards Air Force Base, California, also bound for Kennedy Space Center. |
Date |
03.01.2001 |
|
NASA space shuttle Columbia
Title |
NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Pal |
Description |
NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Palmdale, California, to Kennedy Space Center, Florida, on March 1, 2001. A half hour behind Columbia's takeoff, the shuttle Atlantis departed the NASA Dryden Flight Research Center at Edwards Air Force Base, California, also bound for Kennedy Space Center. |
Date |
03.01.2001 |
|
NASA space shuttle Columbia
Title |
NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Pal |
Description |
NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Palmdale, California, to Kennedy Space Center, Florida, on March 1, 2001. A half hour behind Columbia's takeoff, the shuttle Atlantis departed the NASA Dryden Flight Research Center at Edwards Air Force Base, California, also bound for Kennedy Space Center. |
Date |
03.01.2001 |
|
NASA space shuttle Columbia
Title |
NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Pal |
Description |
NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Palmdale, California, to Kennedy Space Center, Florida, on March 1, 2001. A half hour behind Columbia's takeoff, the shuttle Atlantis departed the NASA Dryden Flight Research Center at Edwards Air Force Base, California, also bound for Kennedy Space Center. |
Date |
03.01.2001 |
|
Space Shuttle Atlantis landi
Title |
Space Shuttle Atlantis landing at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, Ca |
Description |
Space Shuttle Atlantis landed at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000. |
Date |
02.20.2001 |
|
Space Shuttle Atlantis landi
Title |
Space Shuttle Atlantis landing at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force B |
Description |
Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000. |
Date |
02.20.2001 |
|
Space Shuttle Atlantis landi
Title |
Space Shuttle Atlantis landing at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force B |
Description |
Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000. |
Date |
02.20.2001 |
|
Space Shuttle Atlantis landi
Title |
Space Shuttle Atlantis landing at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force B |
Description |
Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000. |
Date |
02.20.2001 |
|
Space Shuttle Endeavour flar
Title |
Space Shuttle Endeavour flares for landing at Edwards Air Force Base, California to conclude STS-100 |
Description |
At the conclusion of Space Shuttle Mission STS-100, Endeavour landed at Edwards Air Force Base, California, May 1, 2001. There the Orbiter would be readied by technicians at NASA's Dryden Flight Research Center for return to Kennedy Space Center, Florida, atop a 747 carrier aircraft. |
Date |
05.01.2001 |
|
Structural loads testing on
Title |
Structural loads testing on the Active Aeroelastic Wing F-18 in the Flight Loads Laboratory at NASA' |
Description |
Structural loads testing on the Active Aeroelastic Wing F-18 in the Flight Loads Laboratory at NASA's Dryden flight Research Center, Edwards, California. The heavily modified and instrumented F-18A entered the Loads Lab in mid-March, 2001, for fit checks of loads hardware and instrumentation checkout prior to initiation of actual structural loads testing. The F-18A underwent loads testing on its modified wings for almost six months, followed by extensive systems tests and simulation before flight tests began. |
Date |
03.15.2001 |
|
The Helios Prototype flying
Title |
The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NAS |
Description |
The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NASA's Dryden flight Research Center, Edwards, California. The 247-foot span solar-powered aircraft, resting on its ground maneuvering dolly, was on display for a visit of NASA Administrator Sean O'Keefe and other NASA officials on January 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on August 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as "atmospheric satellites," performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere. |
Date |
02.01.2002 |
|
The Space Shuttle Endeavour
Title |
The Space Shuttle Endeavour receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's |
Description |
The Space Shuttle Endeavour receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, May 1, 2001. Once servicing was complete, one of NASA's two 747 Shuttle Carrier Aircraft, No. 905, was readied to ferry Endeavour back to the Kennedy Space Center, FL. |
Date |
05.07.2001 |
|
The X-43A hypersonic researc
Title |
The X-43A hypersonic research aircraft and its modified Pegasus booster rocket nestled under the wi |
Description |
The X-43A hypersonic research aircraft and its modified Pegasus booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10. |
Date |
03.15.2001 |
|
The X-43A hypersonic researc
Title |
The X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent c |
Description |
The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10. |
Date |
03.15.2001 |
|
Inflatable Wing Deployment S
Title |
Inflatable Wing Deployment Sequence |
Description |
The deployable, inflatable wing technology demonstrator aircraft's wings begin deploying following separation from its carrier aircraft during a flight experiment conducted by the NASA Dryden Flight Research Center, Edwards, California. Wing deployment time is typically on the order of a third of a second, almost faster than the human eye can see. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings "popped-out," deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control. |
Date |
04.25.2001 |
|
X-38 flies free from NASA's
Title |
X-38 flies free from NASA's B-52 mothership, July 10, 2001 |
Description |
The second free-flight test of an evolving series of X-38 prototypes took place July 10, 2001 when the X-38 was released from NASA's B-52 mothership over the Edwards Air Force Base range in California's Mojave Desert. Shortly after the photo was taken, a sequenced deployment of a drogue parachute followed by a large parafoil fabric wing slowed the X-38 to enable it to land safely on Rogers Dry Lake at Edwards. NASA engineers from the Dryden Flight Research Center at Edwards, and the Johnson Space Center, Houston, Texas, are developing a "lifeboat" for the International Space Station based on X-38 research. |
Date |
07.10.2001 |
|
X-40A on runway after Free F
Title |
X-40A on runway after Free Flight #2A. |
Description |
Second free-flight of the X-40A at the NASA Dryden Flight Research Center, on Edwards AFB, Calif., was made on Apr. 12, 2001. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. The April 12 flight introduced complex vehicle maneuvers during the landing sequence. The X-40A was released from an Army Chinook helicopter flying 15,050 feet overhead. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission. This X-40A free flight was made on the 20th anniversary of the first launch of the space shuttle. |
Date |
04.12.2001 |
|
X-40A releasing from the str
Title |
X-40A releasing from the strongback during Free Flight #2A. Both are attached by tether line to the |
Description |
Second free-flight of the X-40A at the NASA Dryden Flight Research Center, on Edwards AFB, Calif., was made on Apr. 12, 2001. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. The April 12 flight introduced complex vehicle maneuvers during the landing sequence. The X-40A was released from an Army Chinook helicopter flying 15,050 feet overhead. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission. |
Date |
04.12.2001 |
|
Terra/CERES Outgoing Longwav
Title |
Terra/CERES Outgoing Longwave and Reflected Solar radiation- Boxcar Averaged |
Abstract |
Terra/CERES views the world in outgoing longwave radiation (left) and reflected solar radiation (right). This is a 14-day boxcar averaged datasets from March 1, 2001 to May 25, 2001. |
Completed |
2001-06-11 |
|
Terra/CERES Outgoing Longwav
Title |
Terra/CERES Outgoing Longwave and Reflected Solar radiation- Boxcar Averaged |
Abstract |
Terra/CERES views the world in outgoing longwave radiation (left) and reflected solar radiation (right). This is a 14-day boxcar averaged datasets from March 1, 2001 to May 25, 2001. |
Completed |
2001-06-11 |
|
14-Day Boxcar averaged Terra
Title |
14-Day Boxcar averaged Terra/CERES (Outgoing Longwave Radiation) |
Abstract |
This animation displays one year of Outgoing Longwave Radiation (OLR) Terra/CERES data (March 1, 2000 to May 25, 2001) with a 14-day boxcar average. Endpoints have the average re-weighted for the smaller amount of data. The data are 2.5 degree resolution. |
Completed |
2001-06-11 |
|
14-Day Boxcar averaged Terra
Title |
14-Day Boxcar averaged Terra/CERES (Outgoing Longwave Radiation) |
Abstract |
This animation displays one year of Outgoing Longwave Radiation (OLR) Terra/CERES data (March 1, 2000 to May 25, 2001) with a 14-day boxcar average. Endpoints have the average re-weighted for the smaller amount of data. The data are 2.5 degree resolution. |
Completed |
2001-06-11 |
|
Terra/CERES views the Americ
Title |
Terra/CERES views the Americas in Outgoing Longwave Radiation - Daily data |
Abstract |
Terra/CERES views the Americas in Outgoing Longwave Radiation (March 1, 2000 to May 25, 2001). These are daily data. |
Completed |
2001-06-11 |
|
Terra/CERES views the Americ
Title |
Terra/CERES views the Americas in Reflected Solar Radiation - Daily data |
Abstract |
Terra/CERES views the Americas in Reflected Solar Radiation (March 1, 2000 to May 25, 2001). These are daily data. |
Completed |
2001-06-11 |
|
Terra/CERES Outgoing Longwav
Title |
Terra/CERES Outgoing Longwave and Reflected Solar radiation-Daily data |
Abstract |
Terra/CERES views the world in outgoing longwave radiation (left) and reflected solar radiation (right). This is daily data from March 1, 2000 to May 25, 2001. |
Completed |
2001-06-11 |
|
One Year of Terra/CERES data
Title |
One Year of Terra/CERES data (Outgoing Longwave Radiation) Daily data |
Abstract |
This animation displays one year of Outgoing Longwave Radiation (OLR) Terra/CERES data (March 1, 2000 to May 25, 2001) at one day resolution. The data are 2.5 degree resolution. |
Completed |
2001-06-11 |
|
Terra/CERES on the American
Title |
Terra/CERES on the American Southwest: May 2001 |
Abstract |
Terra/CERES views the American southwest during the heatwave of May 2001. The animation is generated for outgoing longwave radiation (heat). |
Completed |
2001-06-11 |
|
14-Day Boxcar averaged Terra
Title |
14-Day Boxcar averaged Terra/CERES (Reflected Solar Radiation) |
Abstract |
This animation displays one year of Reflected Solar Radiation (RSR) Terra/CERES data (March 1, 2000 to May 25, 2001) with a 14-day boxcar average. Endpoints have the average re-weighted for the smaller amount of data. The data are 2.5 degree resolution. |
Completed |
2001-06-11 |
|
14-Day Boxcar averaged Terra
Title |
14-Day Boxcar averaged Terra/CERES (Reflected Solar Radiation) |
Abstract |
This animation displays one year of Reflected Solar Radiation (RSR) Terra/CERES data (March 1, 2000 to May 25, 2001) with a 14-day boxcar average. Endpoints have the average re-weighted for the smaller amount of data. The data are 2.5 degree resolution. |
Completed |
2001-06-11 |
|
F-15B transonic flight resea
AFTI/F-16
Title |
AFTI/F-16 |
Description |
The AFTI F-16 in its final configuration, flying in the vicinity of Edwards Air Force Base, California. During this phase, the two forward infrared turrets were added ahead of the cockpit, the chin canards were removed, and the aircraft was repainted in a standard Air Force scheme. A fuel drop tank is visible below the wing. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001. |
Date |
10.01.1992 |
|
AFTI/F-16
Title |
AFTI/F-16 |
Description |
The AFTI F-16 flying at high angle of attack, shown in the final configuration and paint finish. Dummy Sidewinder air-to-air missles are attached to the wing tips. The white objects visible on the wing racks represent practice bomb dispensers, used in weapon tests. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001. |
Date |
01.01.1991 |
|
AFTI/F-16 50th flight team p
Title |
AFTI/F-16 50th flight team photo |
Description |
An early (1983) photograph of the AFTI F-16 team, commemorating the aircraft's 50th flight. It shows the initial configuration and paint finish of the AFTI F-16, as well as the forward mounted canards and the spin chute. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001. |
Date |
01.01.1983 |
|
AFTI/F-16 Air probe close-up
Title |
AFTI/F-16 Air probe close-up |
Description |
4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001., This close-up view shows the AFTI F-16 air probe early in the research program. It consists of a nose boom resembling a long pipe, and four indicators that look and act like weather vanes. The indicators on the left and right measure pitch, or the movement of the airplane's nose up or down. Those on the top and bottom of the boom measure yaw, or movement of the nose to the left or right. Similar probes are standard on most research and prototype aircraft. The data from the indicators is recorded aboard the aircraft and/or radioed to the ground. This data includes both the amount of yaw and pitch at any given time, and the rate at which both motions changed in flight. This information, subsequently processed and compared to wind tunnel results, may reveal stability and aerodynamic abnormalities. The two metal half-circles and their attachment fixtures are not part of the air probe. Rather, they are used to calibrate the indicators on the ground, enabling the data to be corrected for instrument errors. The figure in the photograph is shown holding a red "Remove Before Flight" ribbon, a reminder to the ground crew that it must be taken off prior to a research mission. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November |
Date |
01.01.1982 |
|
AFTI/F-16 in banked flight
Title |
AFTI/F-16 in banked flight |
Description |
This photo depicts the AFTI F-16 in the configuration used midway through the program. The sensor pods were added to the fuselage, but the chin canards remained in place. Painted in non-standard gray tones, it carried Sidewinder air-to-air missles on its wingtips. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001. |
Date |
01.01.1989 |
|
AFTI/F-16 in flight
Title |
AFTI/F-16 in flight |
Description |
Overhead photograph of the AFTI F-16 painted in a non-standard gray finish, taken during a research flight in 1989. The two sensor pods are visible on the fuselage just forward of the wings and one of the two chin canards can be seen as a light-colored triangle ahead of one of the pods. A Sidewinder air-to-air missile is mounted on each wing tip. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001. |
Date |
01.01.1989 |
|
AFTI/F-16 Spin chute close-u
Title |
AFTI/F-16 Spin chute close-up |
Description |
A close-up photo of the spin chute mounted on the rear fuselage of the AFTI F-16, a safety device designed to prevent the loss of aircraft in spin conditions. Under some circumstances, pilots cannot recover from spins using normal controls. It these instances, the spin chute is deployed, thus "breaking" the spin and enabling the pilot to recover. The spin chute is held in a metal cylinder attached to the AFTI F-16 by four tubes, a structure strong enough to withstand the shock of the spin chute opening. Unlike the air probe in the last photo, spin chutes are not standard equipment on research or prototype aircraft but are commonly attached expressly for actual spin tests. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001. |
Date |
01.01.1982 |
|
Craig R. Bomben
Title |
Craig R. Bomben |
Description |
Craig R. Bomben became a pilot in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, Calif., in June 2001. His flying duties include a variety of research and support activities while piloting the F/A-18, DC-8, T-34C and King Air aircraft. He has more than 17 years and 3,800 hours of military and civilian flight experience in over 50 different aircraft types. Bomben came to NASA Dryden from a U.S. Navy assignment to the Personnel Exchange Program, Canada. He served as a test pilot in the Canadian Armed Forces located in Cold Lake, Alberta. He participated in numerous developmental programs to include CT-133 airborne ejection seat testing, F/A-18 weapons flutter testing and F/A-18 night vision goggles integration. Bomben performed U.S. Navy fleet service in 1995 as a strike-fighter department head. He completed two overseas deployments onboard the USS George Washington and USS Stennis. As a combat strike leader, he headed numerous multi-national missions over Iraq in support of Operation Southern Watch. Bomben graduated from the U.S. Naval Test Pilot School in 1992 and was subsequently assigned to the Naval Weapons Test Squadron at Pt. Mugu, Calif. During this tour he developed the F-14D bombsight and worked on various other F-14D and F/A-18 weapon systems developmental programs. Bomben is a 1985 graduate of Washington State University with a bachelor of science degree in electrical engineering. He graduated from naval flight training in 1987 and was recognized as a Commodore List graduate. His first assignment was to Naval Air Station Pensacola, Fla., where he was an instructor in the T-2B Buckeye. When selected to fly the F/A-18 in 1989, he joined a fleet squadron and deployed aboard the USS Forrestal. Bomben is married to the former Aissa Asuncion. They live in Lancaster, Calif., with their 3 children. |
Date |
06.19.2001 |
|
SR-71 #844 with LASRE pod pa
Title |
SR-71 #844 with LASRE pod parked on ramp, rear view |
Description |
The Linear Aerospike SR-71 Experiment is seen here almost ready for its first flight aboard NASA's SR-71 No. 844. The initial test flight took place on 31 October 1997. The experiment was mounted on the SR-71 on Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Date |
08.01.1997 |
|
SR-71 being towed to hangar
Title |
SR-71 being towed to hangar with LASRE pod installed |
Description |
NASA's SR-71 is being towed to its hangar with the Linear Aerospike SR-71 Experiment installed. The experiment was mounted on the SR-71 on Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California, in preparation for its first flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Date |
08.01.1997 |
|
The Aerostructures Test Wing
Title |
The Aerostructures Test Wing (ATW) experiment, which consisted of an 18-inch carbon fiber test wing |
Description |
A flight experiment called the Aerostructures Test Wing (ATW) conducted at NASA's Dryden Flight Research Center, Edwards, Calif., successfully demonstrated a new software data analysis tool, the flutterometer, which is designed to increase the efficiency of flight flutter testing. The photo shows the experiment, which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, undergoing ground testing prior to flight. The test wing was mounted on a special ventral flight test fixture and flown on Dryden's F-15B Research Testbed aircraft. Five flights consisted of increasing speeds and altitudes leading to the final test point of Mach .85 at an altitude of 10,000 feet. At each Mach and altitude, stability estimations of the wing were made using accelerometer measurements in response to the piezoelectric actuator excitation. The test wing was intentionally flown to the point of structural failure, resulting in about a third of the 18-inch wing breaking off. This allowed engineers to record the effectiveness of the flutterometer over the entire regime of flutter testing, up to and including structural failure. Research objectives of the ATW experiment included validation of the new flutterometer, validation of aerodynamic load predictions on the test wing, and analytical strain gage calibration techniques. |
Date |
03.28.2001 |
|
The Aerostructures Test Wing
Title |
The Aerostructures Test Wing (ATW), which consisted of an 18-inch carbon fiber test wing with surfac |
Description |
A flight experiment called the Aerostructures Test Wing (ATW) conducted at NASA's Dryden Flight Research Center, Edwards, Calif., successfully demonstrated a new software data analysis tool, the flutterometer, which is designed to increase the efficiency of flight flutter testing. The photo shows the experiment, which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, following intentional failure on its final flight. The test wing was mounted on a special ventral flight test fixture and flown on Dryden's F-15B Research Testbed aircraft. Five flights consisted of increasing speeds and altitudes leading to the final test point of Mach .85 at an altitude of 10,000 feet. At each Mach and altitude, stability estimations of the wing were made using accelerometer measurements in response to the piezoelectric actuator excitation. The test wing was intentionally flown to the point of structural failure, resulting in about a third of the 18-inch wing breaking off. This allowed engineers to record the effectiveness of the flutterometer over the entire regime of flutter testing, up to and including structural failure. Research objectives of the ATW experiment included validation of the new flutterometer, validation of aerodynamic load predictions on the test wing, and analytical strain gage calibration techniques. |
Date |
04.24.2001 |
|
Head-on view showing the X-4
Title |
Head-on view showing the X-43A hypersonic research aircraft after it was mated to its modified Pegas |
Description |
This head-on view shows the first of three X-43A hypersonic research aircraft (foreground) after it was mated to its modified Pegasus booster rocket (rear) in late January at NASA's Dryden Flight Research Center, Edwards, Calif. FIRST X-43A MATED TO BOOSTER -- This head-on view shows the first of three X-43A hypersonic research aircraft (foreground) after it was mated to its modified Pegasus booster rocket (rear) in late January at NASA's Dryden Flight Research Center, Edwards, Calif. Mating of the X-43A and its specially-designed adapter to the first stage of the booster rocket marks a major milestone in the Hyper-X hypersonic research program. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., for NASA. The booster, built by Orbital Sciences Corp., Dulles, Va.,will accelerate the X-43A after the X-43A booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer, 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine. |
Date |
01.22.2001 |
|
Two F/A-18B aircraft involve
Title |
Two F/A-18B aircraft involved in the AFF program return to base in close formation with the autonomo |
Description |
After completing a milestone autonomous station-keeping formation, two F/A-18B aircraft from the NASA Dryden Flight Research Center, Edwards, California, return to base in close formation with the autonomous function disengaged. For the milestone, the aircraft were spaced approximately 200 feet nose-to-tail and 50 feet apart laterally and vertically. Autonomous formation control was maintained by the trailing aircraft, the Systems Research Aircraft (SRA), in the lateral and vertical axes to within five feet of the commanded position. Nose-to-tail separation of the aircraft was controlled by manual throttle inputs by the trailing aircraft's pilot. The milestone was accomplished on the seventh flight of a 12 flight phase. The AFF flights were a first for a project under NASA's Revolutionary (RevCon) in Aeronautics Project. Dryden was the lead NASA center for RevCon, an endeavor to accelerate the exploration of high-risk, revolutionary technologies in atmospheric flight. Automated formation flight could lead to formation fuel efficiencies and higher air traffic capacity. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements. |
Date |
02.21.2001 |
|
LASRE pod being mated to SR-
Title |
LASRE pod being mated to SR-71 |
Description |
These workers are performing a fit-check of the Linear Aerospike SR-71 Experiment (LASRE) on the back of a NASA Dryden Flight Research Center SR-71. The fit-check occurred Feb. 15, 1996, at Lockheed Martin Skunkworks in Palmdale, California. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Date |
02.15.1996 |
|
LASRE pod being mated to SR-
Title |
LASRE pod being mated to SR-71 |
Description |
This is a head-on view of the NASA-Dryden Flight Research Center (DFRC) SR-71 with the Linear Aerospike SR Experiment (LASRE) pod held over it's attachment points on the aircraft for a fit-check. The fit-check occurred Feb. 15, 1996, at Lockheed Martin Skunkworks in Palmdale, Cailfornia. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Date |
02.15.1996 |
|
LASRE pod being mated to SR-
Title |
LASRE pod being mated to SR-71 |
Description |
The Linear Aerospike SR-71 Experiment is mounted on a NASA SR-71 aircraft Aug. 26, at the NASA Dryden Flight Research Center, Edwards, California, in preparation for the experiment's first flight, which took place on 31 October 1997. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Date |
08.01.1997 |
|
X-43A departs NASA Dryden Fl
Title |
X-43A departs NASA Dryden Flight Research Center for first free-flight attempt. |
Description |
The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or "scramjet" engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean. |
Date |
06.02.2001 |
|
X-43A hypersonic research ai
Title |
X-43A hypersonic research aircraft mated to its modified Pegasus booster rocket. |
Description |
The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. FIRST X-43A MATED TO BOOSTER -- The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. Mating of the X-43A and its specially-designed adapter to the first stage of the booster rocket marks a major milestone in the Hyper-X hypersonic research program. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., for NASA. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer of 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine. |
Date |
01.22.2001 |
|
An artist's rendering of the
Title |
An artist's rendering of the 21st Century Aerospace Vehicle, sometimes nicknamed the Morphing Airpla |
Description |
An artist's rendering shows advanced concepts NASA envisions for an aircraft of the future. Called the 21st Century Aerospace Vehicle, and sometimes nicknamed the Morphing Airplane, the concept includes a variety of smart technologies that could enable inflight configuration changes for optimum flight characteristics. |
Date |
01.01.2001 |
|
NASA's Boeing 747 SCA with t
Title |
NASA's Boeing 747 SCA with the Space Shuttle Endeavour on top climbs out after takeoff from Edwards |
Description |
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Endeavour on top climbs out after takeoff from Edwards Air Force Base on the first leg of its ferry flight back to the Kennedy Space Center in Florida. |
Date |
05.08.2001 |
|
NASA's modified Boeing 747 S
Title |
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Endeavour on top lifts of |
Description |
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Endeavour on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida. |
Date |
05.08.2001 |
|
CH-47 and X-40A before Free
Title |
CH-47 and X-40A before Free flight 4A |
Description |
CH-47 and X-40A before Free flight 4A. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission. |
Date |
05.05.2001 |
|
The 247-foot length of the H
Title |
The 247-foot length of the Helios prototype wing is in evidence as the solar-powered flying wing res |
Description |
The 247-foot length of the Helios prototype wing is in evidence as the high-altitude, solar-powered flying wing rests on its ground dolly during pre-flight tests at the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii. |
Date |
04.28.2001 |
|
Ground crewmen maneuver the
Title |
Ground crewmen maneuver the Helios Prototype flying wing on its ground support dolly during function |
Description |
Ground crewmen maneuver AeroVironment's solar-powered Helios Prototype flying wing on its ground support dolly during functional checkouts prior to its first flights under solar power from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii. |
Date |
04.28.2001 |
|
Ground crewmen maneuver the
Title |
Ground crewmen maneuver the Helios Prototype flying wing on its ground support dolly during function |
Description |
Ground crewmen maneuver AeroVironment's solar-powered Helios Prototype flying wing on its ground support dolly during functional checkouts prior to its first flights under solar power from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii. |
Date |
04.28.2001 |
|
Ground crewmen maneuver the
Title |
Ground crewmen maneuver the Helios Prototype flying wing on its ground support dolly during function |
Description |
Ground crewmen maneuver AeroVironment's solar-powered Helios Prototype flying wing on its ground support dolly during functional checkouts prior to its first flights under solar power from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii. |
Date |
04.28.2001 |
|
Ground crewmen maneuver the
Title |
Ground crewmen maneuver the Helios Prototype flying wing on its ground support dolly during function |
Description |
Ground crewmen maneuver AeroVironment's solar-powered Helios Prototype flying wing on its ground support dolly during functional checkouts prior to its first flights under solar power from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii. |
Date |
04.28.2001 |
|
Helios Prototype crew chief
Title |
Helios Prototype crew chief Marshall MacCready of AeroVironment, Inc., carefully monitors motor runs |
Description |
Helios Prototype crew chief Marshall MacCready of AeroVironment, Inc., carefully monitors motor runs during ground checkout of the solar-powered flying wing prior to its first flight from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii. |
Date |
04.28.2001 |
|
X-38 over the Mojave Desert,
Title |
X-38 over the Mojave Desert, July 10, 2001 |
Description |
NASA's X-38 glided high over California desert test ranges as it descended from 37,500 feet to land on Rogers Dry Lake for the seventh free flight of the program July 10, 2001. |
Date |
07.10.2001 |
|
X-40A departure with CH-47 -
Title |
X-40A departure with CH-47 - flight #7 |
Description |
X-40A departure with CH-47 - flight #7. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission. |
Date |
05.18.2001 |
|
X-40A landing after Free Fli
Title |
X-40A landing after Free Flight 4A |
Description |
X-40A landing after Free Flight 4A. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission. |
Date |
05.05.2001 |
|
NASA Langley Open House 2001
Title |
NASA Langley Open House 2001 |
Description |
Systems and Airframe Failure Emulation Testing and Integration Laboratory, building 1220: Displays included simulation and computer visualizations that help show how Langley is making flying safer. |
Date |
04.28.2001 |
|
NASA Langley Open House 2001
Title |
NASA Langley Open House 2001 |
Description |
High-Intensity Radiated Fields Laboratory, Building 1220: Displays included simulations and computer visualizations that help show how Langley is making flying safer. |
Date |
04.28.2001 |
|
NASA Langley Open House 2001
Title |
NASA Langley Open House 2001 |
Description |
High-Intensity Radiated Fields Laboratory, Building 1220: Displays included simulations and computer visualizations that help show how Langley is making flying safer. |
Date |
04.28.2001 |
|
|