|
Search Results: All Fields similar to 'Galileo' and When equal to '1999'
|
Printer Friendly |
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Galileo PPR temperature maps
PIA02524
Jupiter
Title |
Galileo PPR temperature maps of Loki in October 1999 |
Original Caption Released with Image |
Like a terrestrial weather map, this map made by the photopolarimeter-radiometer onboard NASA's Galileo spacecraft shows how temperatures vary across the surface of Jupiter's moon Io. However, in this case the temperatures are due to volcanic activity, not weather. The maps show Io's most powerful volcano, Loki, which was in the throes of one of its periodic bright eruptions when the map was made during Galileo's close flyby of Io on October. The background to the temperature map is a Galileo image of Loki taken earlier in the Galileo mission. Loki's most prominent feature is the huge horseshoe-shaped dark caldera, 200 kilometers (120 miles) across. These observations reveal that most of the lava lake is at a remarkably uniform temperature, about -23 degrees C (-9 degrees F). This is chilly by Earth standards, but on Io, where most of the surface is colder than -145 degrees C (-230 degrees F), enormous amounts of volcanic heat are required to keep such a large area at this temperature. The uniform temperature, which was also seen by Galileo's Near Infrared Mapping Spectrometer, could be due to a uniformly thick frozen crust over a lake of molten lava, or to a series of old lava flows that have been cooling down for a year or two since they erupted. The southwestern corner of the caldera is much hotter the highest resolution photopolarimeter-radiometer observation shows peak temperatures of at least 126 degrees C (260 F). It is likely that this is the site of the new eruption that began in September, and that fresh lava erupting there will eventually spill out from this region to warm up the parts of the caldera to the east and north. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Amirani-Maui: Longest Known
PIA02506
Jupiter
Solid-State Imaging
Title |
Amirani-Maui: Longest Known Active Lava Flow in the Solar System |
Original Caption Released with Image |
This pair of volcanic features on Jupiter's moon Io represents the longest active lava flow known to exist in our solar system. This image, one of the highest resolution pictures ever taken of Io, was obtained by NASA s Galileo spacecraft on July 3, 1999. That was during Galileo's closest pass by Io since it entered orbit around Jupiter in December 1995. The volcanic features, Amirani (right side of image) and Maui (to the left, just below the center of the image), were originally thought to be two separate volcanoes. However, Galileo images have shown that Maui is actually the active front of a lava flow that has extended westward from a vent at Amirani for more than 250 kilometers (160 miles). Observations by Galileo's near-infrared mapping spectrometer show a hotspot at Maui, so the lava must still be flowing. Other flows extend northward from the Amirani vent. White plume deposits encircle the Amirani vent and are likely to be sulfur dioxide-rich vapors that have escaped at the vent, frozen and then snowed out onto the ground. The red deposits from the dark spot southwest of the Amirani vent appear to have been blown away from the stronger Amirani plume. The red material may be produced by a form of sulfur. Amirani-Maui is more than 250 kilometers (160 miles) long. Such gigantic lava flows are found on Venus, the Earth, the Moon, and Mars. Massive eruptions on the Earth coincide with the times of major extinction events. The image, in false color, uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera, processed to enhance subtle color variations. North is to the top of the picture, and the Sun illuminates the surface from almost directly behind the spacecraft. This illumination is good for imaging color variations, but poor for imaging topographic shading. The image is centered at 23 degrees north latitude and 118 degrees west longitude. The images were taken at a distance of about 130,000 kilometers (81,000 miles) by Galileo's onboard solid state imaging camera and have a resolution of 1.3 kilometers or 0.8 miles per picture element. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of Caltech. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page athttp://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found athttp://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ] |
|
Amirani-Maui: Longest Known
PIA02506
Jupiter
Solid-State Imaging
Title |
Amirani-Maui: Longest Known Active Lava Flow in the Solar System |
Original Caption Released with Image |
This pair of volcanic features on Jupiter's moon Io represents the longest active lava flow known to exist in our solar system. This image, one of the highest resolution pictures ever taken of Io, was obtained by NASA s Galileo spacecraft on July 3, 1999. That was during Galileo's closest pass by Io since it entered orbit around Jupiter in December 1995. The volcanic features, Amirani (right side of image) and Maui (to the left, just below the center of the image), were originally thought to be two separate volcanoes. However, Galileo images have shown that Maui is actually the active front of a lava flow that has extended westward from a vent at Amirani for more than 250 kilometers (160 miles). Observations by Galileo's near-infrared mapping spectrometer show a hotspot at Maui, so the lava must still be flowing. Other flows extend northward from the Amirani vent. White plume deposits encircle the Amirani vent and are likely to be sulfur dioxide-rich vapors that have escaped at the vent, frozen and then snowed out onto the ground. The red deposits from the dark spot southwest of the Amirani vent appear to have been blown away from the stronger Amirani plume. The red material may be produced by a form of sulfur. Amirani-Maui is more than 250 kilometers (160 miles) long. Such gigantic lava flows are found on Venus, the Earth, the Moon, and Mars. Massive eruptions on the Earth coincide with the times of major extinction events. The image, in false color, uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera, processed to enhance subtle color variations. North is to the top of the picture, and the Sun illuminates the surface from almost directly behind the spacecraft. This illumination is good for imaging color variations, but poor for imaging topographic shading. The image is centered at 23 degrees north latitude and 118 degrees west longitude. The images were taken at a distance of about 130,000 kilometers (81,000 miles) by Galileo's onboard solid state imaging camera and have a resolution of 1.3 kilometers or 0.8 miles per picture element. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of Caltech. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page athttp://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found athttp://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ] |
|
Active Volcanic Plumes on Io
PIA00703
Jupiter
Solid-State Imaging
Title |
Active Volcanic Plumes on Io |
Original Caption Released with Image |
This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles). The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images. North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles). The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech). This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo |
|
Potential Source of Sulfur F
PIA03887
Jupiter
Solid-State Imaging
Title |
Potential Source of Sulfur Flow on Io |
Original Caption Released with Image |
A field of bright lava flows next to a shield volcano could be a source of recent sulfur volcanism on Io, as detected by instruments aboard NASA's Galileo spacecraft. The mosaic at left combines higher-resolution images (330 meters or about 1080 feet per picture element) taken in October 2001 with lower-resolution color images (1.4 kilometers or 0.9 mile per picture element) taken in July 1999 by Galileo's solid-state imaging camera. By comparing these images with a map of hot spots taken in February by Galileo's near-infrared mapping spectrometer (lower right), Galileo scientists noted that a new hot spot west of the active volcano Prometheus became bright in February 2000 and dimmed later. This hot spot appears to correspond with the bright flow field just west of a recently discovered shield volcano (see PIA03532 [ http://photojournal.jpl.nasa.gov/catalog/PIA03532 ]), which is the only fresh volcanic material in the area. The relatively low intensity of the February 2000 hot spot in the infrared data suggests a low-temperature eruption, consistent with sulfur lava rather than silicate lava as found elsewhere on Io and also on Earth. Sulfur lavas are thought to cool to a gray-yellow color on Io, as seen in the new flow field visible in the camera image. This bright flow field could be the best example of active sulfur lava flows deposited on Io during the Galileo mission. At upper right is a global view of Io showing the location of the more-detailed images. The low temperature of this hot spot differs from many of Io's other active volcanoes, such as Pele, Tvashtar and Prometheus. Intense tidal flexing of Io helps keep the moon's interior molten, at some places producing silicate lavas hotter than any seen on Earth in billions of years. Io has the greatest known diversity of volcanic activity in the solar system. North is to the top of all these images. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. Additional information about Galileo and its discoveries is available on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ] . Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Galileo's Last View of Tvash
PIA03529
Jupiter
Solid-State Imaging
Title |
Galileo's Last View of Tvashtar, Io |
Original Caption Released with Image |
This mosaic of Tvashtar Catena on Jupiter's moon Io, taken by NASA's Galileo spacecraft on Oct. 16, 2001, completes a series of views depicting changes in the region over a period of nearly two years. A catena is a chain of volcanic craters. Streaks of light and dark deposits that radiate from the central volcanic crater, or "patera," are remnants of a tall plume that was seen erupting in earlier images. This image and the others from November 1999, February 2000 [ http://photojournal.jpl.nasa.gov/catalog/PIA02584 ], December 2000 [ http://photojournal.jpl.nasa.gov/catalog/PIA02588 ], and August 2001 [ http://photojournal.jpl.nasa.gov/catalog/PIA02592 ] were all taken to study aspects of this ever-changing, extremely active volcanic field. Tvashtar is pictured here just 10 months after both the Galileo and Cassini spacecraft observed the eruption of a giant plume of volcanic gas emanating from it. The plume rose 385 kilometers (239 miles) high and blanketed terrain as far as 700 kilometers (435 miles) from its center. Tvashtar has erupted in a variety of styles over the course of almost two years: (1) a lava curtain [ http://photojournal.jpl.nasa.gov/catalog/PIA02519 ] 50 kilometers (30 miles) long in the center patera, (2) a giant lava flow or lava lake eruption [ http://photojournal.jpl.nasa.gov/catalog/PIA02550 ] in the giant patera at far left, and (3) the large plume eruption [ http://photojournal.jpl.nasa.gov/catalog/PIA02588 ]. Therefore Galileo scientists expected that the lava flow margins or patera boundaries within Tvashtar would have changed drastically. However, the series of observations revealed little modification of this sort, suggesting that the intense eruptions at Tvashtar are confined by the local topography. North is to the top of the mosaic, which is approximately 300 kilometers(186 miles) across and has a resolution of 200 meters (656 feet) per picture element. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. Additional information about Galileo and its discoveries is available on the Galileo mission home page athttp://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educationalcontext for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Closeups of Io (false color)
PIA02319
Jupiter
Solid-State Imaging
Title |
Closeups of Io (false color) |
Original Caption Released with Image |
NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's volcanic moon Io on July 3, 1999 during its closest pass by Io since it entered orbit around Jupiter in December 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera, processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red areas near the active volcanic centers. The improved resolution reveals small-scale color areas which were not recognized previously and which suggest that the lava and sulfurous deposits are composed of complex mixtures (close-up A). Some of the bright, whitish, high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (close-up B). Bright red areas were seen in previous images only as diffuse deposits. However, they now appear as both diffuse deposits and sharp linear features like fissures (close-up C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur (rather than silicate) lava (close-up D). In this region of Io, bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to ongoing volcanic activity. Galileo is scheduled to make two close passes of Io in October and November. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture, and the Sun illuminates the surface from almost directly behind the spacecraft. This illumination is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and rugged topography over parts of Io. The mosaic is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The images were taken at a distance of about 130,000 kilometers (81,000 miles) by Galileo's onboard solid state imaging camera. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]. |
|
Io's Tvashtar Area in Infrar
PIA02594
Jupiter
Near Infrared Mapping Spectr
Title |
Io's Tvashtar Area in Infrared: Multiple Lava Flows |
Original Caption Released with Image |
New and older lava flows clustered in the Tvashtar region of Jupiter's moon Io appear as hot spots in a temperature map from NASA's Galileo spacecraft. The multiple hot spots indicate continuing shifts in the location of Tvashtar's eruptions since the region's volcanic activity was first seen in December 1999. The temperature map (top) uses infrared observations made during Galileo's Aug. 6, 2001, flyby of Io. It is shown using landmarks from a February 2000 visible-light image (bottom) that Galileo's camera recorded of the Tvashtar area of bowl-like depressions in Io's northern hemisphere. The temperature map comes from Galileo's near-infrared mapping spectrometer. Tvashtar has been a very active region since December 1999, when Galileo detected a major eruption from the location marked A (See insert image below). The eruption from A was interpreted as a row of lava fountains. When Galileo flew by Io again in February 2000, the eruption had shifted to the location marked B, where a lava flow shaped like a dolphin's tail is seen. The temperature map shows that volcanic activity is present at many locations in this region. The highest temperatures are found in the three locations marked x, where new lavas may have recently come to the surface. Temperatures (in Kelvin) displayed in the color bar are lower limits. (The range in Fahrenheit is from 460 degrees below zero to 530 degrees above zero.) Each picture element averages the characteristics of an area about 2 kilometers (1.2 miles) across, smaller patches may be hundreds of degrees higher. The Galileo camera did not obtain a visible-light image of the Tvashtar region during the August 2001 flyby. Based on the locations of the hottest materials detected by Galileo's near-infrared mapping spectrometer, volcanologists expect that significant surface changes have occurred.The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. Additional information about the spacecraft and its discoveries is available on the Galileo home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. |
|
Io's Tvashtar Area in Infrar
PIA02594
Jupiter
Near Infrared Mapping Spectr
Title |
Io's Tvashtar Area in Infrared: Multiple Lava Flows |
Original Caption Released with Image |
New and older lava flows clustered in the Tvashtar region of Jupiter's moon Io appear as hot spots in a temperature map from NASA's Galileo spacecraft. The multiple hot spots indicate continuing shifts in the location of Tvashtar's eruptions since the region's volcanic activity was first seen in December 1999. The temperature map (top) uses infrared observations made during Galileo's Aug. 6, 2001, flyby of Io. It is shown using landmarks from a February 2000 visible-light image (bottom) that Galileo's camera recorded of the Tvashtar area of bowl-like depressions in Io's northern hemisphere. The temperature map comes from Galileo's near-infrared mapping spectrometer. Tvashtar has been a very active region since December 1999, when Galileo detected a major eruption from the location marked A (See insert image below). The eruption from A was interpreted as a row of lava fountains. When Galileo flew by Io again in February 2000, the eruption had shifted to the location marked B, where a lava flow shaped like a dolphin's tail is seen. The temperature map shows that volcanic activity is present at many locations in this region. The highest temperatures are found in the three locations marked x, where new lavas may have recently come to the surface. Temperatures (in Kelvin) displayed in the color bar are lower limits. (The range in Fahrenheit is from 460 degrees below zero to 530 degrees above zero.) Each picture element averages the characteristics of an area about 2 kilometers (1.2 miles) across, smaller patches may be hundreds of degrees higher. The Galileo camera did not obtain a visible-light image of the Tvashtar region during the August 2001 flyby. Based on the locations of the hottest materials detected by Galileo's near-infrared mapping spectrometer, volcanologists expect that significant surface changes have occurred.The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. Additional information about the spacecraft and its discoveries is available on the Galileo home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. |
|
Io's Pele Glowing in the Dar
PIA02596
Jupiter
Solid-State Imaging
Title |
Io's Pele Glowing in the Dark |
Original Caption Released with Image |
In a high-resolution view from NASA's Galileo spacecraft, the Pele hot spot on Jupiter's moon Io shows a complex pattern of areas glowing in the dark, including areas likely to be fresh overturning of a lava lake's crust. Hundreds of hot spots have been observed on Io, the most volcanic world in the solar system. Most previous observations have been at very low resolution. This false-color nighttime image of the Pele hot spot, acquired during Galileo's close flyby of Io in October 2001, reveals details down to 60 meters (200 feet) in length. Red indicates the most intense combination of temperature and area, blue indicates cooler materials or smaller patches of hot materials. Scientists believe the Pele hot spot has a lava lake inside a volcanic crater or caldera. The series of bright spots seen here may correspond to the edge of the caldera, where cooled crust of the lava lake is breaking up against the wall and hotter lava appears from underneath. (That pattern is seen in a lava lake in Hawaii). Alternatively, they could be fractures in the crust. Galileo acquired similar observations [ http://photojournal.jpl.nasa.gov/catalog/PIA02511 ] in October 1999 and February 2000, but the newest images are the first to show the larger bright areas seen on the right side of the image. These probably correspond to regions of vigorous overturning of the crust. Galileo acquired several nighttime images of Pele in October 2001. These may enable measurements of temperature and perhaps detection of short-term changes in the exposures of hot lava. Preliminary calculations indicate the lava temperature is about 1,400 degrees Kelvin (2,060 degrees Fahrenheit) at one location, which would be similar to the temperatures of lava erupted at Kilauea in Hawaii. North is the top of the picture. The image is centered at 18.7 degrees south latitude and 255.5 degrees west longitude. Galileo's camera took it from a distance of about 6,000 kilometers (3,700 miles) away. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. Additional information about Galileo and its discoveries is available on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Sulfuric Acid on Europa
Frozen sulfuric acid on Jupi
9/1/99
Date |
9/1/99 |
Description |
Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer. Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA. ##### |
|
Culann Patera/NIMS
PIA02544
Jupiter
Near Infrared Mapping Spectr
Title |
Culann Patera/NIMS |
Original Caption Released with Image |
The Culann Patera volcano on Jupiter's moon Io was observed by the near-infrared mapping spectrometer instrument onboard NASA's Galileo spacecraft during its Io flyby on November 25, 1999. The instrument obtained spectral data over part of Culann. The spectra were made into a map of the relative amounts of sulfur dioxide frost, superimposed on an image taken by Galileo's camera in July 1999. In the map, white represents more sulfur dioxide. The image is about 340 kilometers (210 miles) across. The red deposits around Culann and many other volcanoes on Io are thought to be short-chain sulfur molecules (S3 and S4). The spectrometer data shows that the red deposits coincide with enhanced concentrations of sulfur dioxide frost. This is interpreted as being caused by a plume that produced both sulfur and sulfur dioxide, depositing both materials in the same locations. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Color Mosaic and Active Volc
PIA01081
Jupiter
Solid-State Imaging
Title |
Color Mosaic and Active Volcanic Plumes on Io |
Original Caption Released with Image |
This color image, acquired during Galileo's ninth orbit (C9) around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon, erupting over a caldera (volcanic depression) named Pillan Patera. The plume seen by Galileo is 140 kilometers (86 miles) high, and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 (373 miles). The second plume, seen near the terminator, the boundary between day and night, is called Prometheus after the Greek fire god). The shadow of the airborne plume can be seen extending to the right of the eruption vent. (The vent is near the center of the bright and dark rings). Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and HST images.Color images from orbit C9 have been merged with a high resolution mosaic of images acquired in various orbits to enhance the surface detail. PIA00703 [ http://photojournal.jpl.nasa.gov/catalog/PIA00703 ] is another version of this image which also includes detailed insets of the plumes. North is to the top of the picture. The resolution is about 2 kilometers (1.2 miles) per picture element. This composite uses images taken with the green, violet, and near-infrared filters of the Solid State Imaging (CCD) system on NASA's Galileo spacecraft. The C9 images were obtained on June 28, 1997 at a range of more than 600,000 kilometers (372, 000 miles). The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech). This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. |
|
Close-up of Zamama, Io (colo
PIA02504
Jupiter
Solid-State Imaging
Title |
Close-up of Zamama, Io (color) |
Original Caption Released with Image |
A volcano named Zamama on Jupiter's moon Io has recently changed in appearance as seen in this pair of images of Io acquired by NASA's Galileo spacecraft as it approached Io in preparation for a close flyby. The false color images use the near-infrared, green and violet filters (a range greater than the range the human eye can see) of the spacecraft's camera, processed to slightly enhance Io's naturally vibrant colors. The image on the left was acquired in March 1998 during Galileo's 14th orbit and the image on the right was collected in July 1999 during the 21st orbit. The July 1999 images are the highest resolution images of Io taken by Galileo since it entered orbit around Jupiter in December 1995.Zamama formed [ http://photojournal.jpl.nasa.gov/catalog/PIA01071 ], during the time period between the flybys of NASA's Voyager spacecraft in 1979 and Galileo's first images of Io taken in 1996. Based on these images, Galileo scientists suspect that the dark lava is erupting from a crack in the ground. Analysis of combined data from Galileo's camera and its near-infrared mapping spectrometer instrument showed that the lava erupting at Zamama must be hotter than 830 C (1,500 F). Because this too hot to be sulfur, scientists believe the lava may contain silicates. The most dramatic difference between these two images is that the volcanic plume that was active in March 1998 and earlier had stopped erupting by July 1999. The rising core of the umbrella-shaped plume can be seen in the 1998 image as a bluish spot in the center of the dark lava. Dark and bright spokes of material falling away from the core are also visible. When it falls back to the ground, this material makes circular white and yellow deposits around the vent. The white deposits are thought to be composed mostly of sulfur dioxide that left the volcanic vent as a vapor and condensed into a frost as the gases expanded into the near-vacuum of Io's atmosphere. Interestingly, red plume material has only been deposited to the northwest. This might be the result of small pockets of boiling sulfur that produce droplets of red sulfur blown outward by the main plume. Most of the other, more subtle color variations around Zamama are likely to be the result of different lighting conditions that existed when the two images were taken. A high-resolution (20 to 40 meters or 66 to 130 feet per picture element) strip of images across Zamama is planned during Galileo's flyby of Io on October 10, 1999. These images will be useful in determining how lava moves on Io's surface, specifically whether the lava travels in open rivers of lava or in well-insulated lava tubes. The size and shape of features on the lava flows can be used to estimate properties of the lava that will provide vital clues to the still unanswered question about what kind of lava is erupting from Io's volcanoes. North is to the top of the pictures. The images are centered at 17.4 degrees north latitude and 173 degrees west longitude. The image on the left was taken on March 1998 at a range of 294,000 kilometers (183,000 miles) and has a resolution of 3 kilometers (2 miles) per picture element. The Sun illuminates the surface from the right. The image on the right was taken in July 1999 at a distance of about 130,000 kilometers (81,000 miles) and has a resolution of 1.3 kilometers or 0.8 miles per picture element. The Sun illuminates the surface from almost directly behind the spacecraft. The Jet Propulsion Laboratory, Pasadena, CA, manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission, home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]. |
|
Close-up of Zamama, Io (colo
PIA02504
Jupiter
Solid-State Imaging
Title |
Close-up of Zamama, Io (color) |
Original Caption Released with Image |
A volcano named Zamama on Jupiter's moon Io has recently changed in appearance as seen in this pair of images of Io acquired by NASA's Galileo spacecraft as it approached Io in preparation for a close flyby. The false color images use the near-infrared, green and violet filters (a range greater than the range the human eye can see) of the spacecraft's camera, processed to slightly enhance Io's naturally vibrant colors. The image on the left was acquired in March 1998 during Galileo's 14th orbit and the image on the right was collected in July 1999 during the 21st orbit. The July 1999 images are the highest resolution images of Io taken by Galileo since it entered orbit around Jupiter in December 1995.Zamama formed [ http://photojournal.jpl.nasa.gov/catalog/PIA01071 ], during the time period between the flybys of NASA's Voyager spacecraft in 1979 and Galileo's first images of Io taken in 1996. Based on these images, Galileo scientists suspect that the dark lava is erupting from a crack in the ground. Analysis of combined data from Galileo's camera and its near-infrared mapping spectrometer instrument showed that the lava erupting at Zamama must be hotter than 830 C (1,500 F). Because this too hot to be sulfur, scientists believe the lava may contain silicates. The most dramatic difference between these two images is that the volcanic plume that was active in March 1998 and earlier had stopped erupting by July 1999. The rising core of the umbrella-shaped plume can be seen in the 1998 image as a bluish spot in the center of the dark lava. Dark and bright spokes of material falling away from the core are also visible. When it falls back to the ground, this material makes circular white and yellow deposits around the vent. The white deposits are thought to be composed mostly of sulfur dioxide that left the volcanic vent as a vapor and condensed into a frost as the gases expanded into the near-vacuum of Io's atmosphere. Interestingly, red plume material has only been deposited to the northwest. This might be the result of small pockets of boiling sulfur that produce droplets of red sulfur blown outward by the main plume. Most of the other, more subtle color variations around Zamama are likely to be the result of different lighting conditions that existed when the two images were taken. A high-resolution (20 to 40 meters or 66 to 130 feet per picture element) strip of images across Zamama is planned during Galileo's flyby of Io on October 10, 1999. These images will be useful in determining how lava moves on Io's surface, specifically whether the lava travels in open rivers of lava or in well-insulated lava tubes. The size and shape of features on the lava flows can be used to estimate properties of the lava that will provide vital clues to the still unanswered question about what kind of lava is erupting from Io's volcanoes. North is to the top of the pictures. The images are centered at 17.4 degrees north latitude and 173 degrees west longitude. The image on the left was taken on March 1998 at a range of 294,000 kilometers (183,000 miles) and has a resolution of 3 kilometers (2 miles) per picture element. The Sun illuminates the surface from the right. The image on the right was taken in July 1999 at a distance of about 130,000 kilometers (81,000 miles) and has a resolution of 1.3 kilometers or 0.8 miles per picture element. The Sun illuminates the surface from almost directly behind the spacecraft. The Jet Propulsion Laboratory, Pasadena, CA, manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission, home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]. |
|
Highest Resolution Image Eve
PIA02507
Jupiter
Solid-State Imaging
Title |
Highest Resolution Image Ever Obtained of Io |
Original Caption Released with Image |
Click on this image for a full resolution context image (in tiff format) that corresponds to the caption below. Click here for a jpeg format image. The highest resolution image ever of Jupiter's volcanic moon Io, (the black and white image at top), was taken by NASA's Galileo spacecraft on October 10, 1999, from an altitude of 617 kilometers (417 miles). It shows an area about 7.2 kilometers (4.5 miles) long and 2.2 kilometers (1.4 miles)wide. Features as small as 9 meters (30 feet) can be discerned, providing a resolution which is 50 times better the previous best, taken by the Voyager spacecraft in 1979. The box drawn in the center image, a Galileo image of Io taken earlier in the mission, shows the area displayed in the new image at top. The three color images below show the volcanic region from a much higher altitude than the other images and follow a volcanic eruption observed by Galileo earlier in mission This new image targeted lava flows that erupted from the volcano Pillan. A complex mix of smooth and rough areas can be seen with clusters of pits and domes, many of which are the size of houses. The volcanic features are similar to those found on Earth and Mars. However, this combination of different types of lava flows has not been seen before in such a small area, demonstrating the variety of volcanic processes that continue to change the surface of Io. North is to the top of the pictures and the Sun illuminates the surface from the right. In the top and middle images the Sun is only a few degrees above the horizon, emphasizing topography. Galileo scientists estimate that the cliff on the left side of the image ranges from 3 to 10 meters (10 to 33 feet) high. In 1997 Galileo caught Pillan in the process of erupting. The explosion blanketed an area 400 kilometers (250 miles) in diameter with ash as seen in the series of three color images at the bottom. These images show the changes that have occurred at Pillan over the last three years (previous release) [ http://photojournal.jpl.nasa.gov/catalog/PIA02501 ]. Pillan is the new dark spot in middle color frame and the big, red ring seen in all three images is formed by the plume from the nearby volcano Pele. Galileo's camera and near-infrared mapping spectrometer measured the temperatures of the lavas during the eruption and found that they were hotter than any known eruption on Earth in the last two billion years. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/galileo [ http://www.jpl.nasa.gov/galileo ]. Background information and educational context for the images can be found at URLhttp://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]. |
|
Highest Resolution Image Eve
PIA02507
Jupiter
Solid-State Imaging
Title |
Highest Resolution Image Ever Obtained of Io |
Original Caption Released with Image |
Click on this image for a full resolution context image (in tiff format) that corresponds to the caption below. Click here for a jpeg format image. The highest resolution image ever of Jupiter's volcanic moon Io, (the black and white image at top), was taken by NASA's Galileo spacecraft on October 10, 1999, from an altitude of 617 kilometers (417 miles). It shows an area about 7.2 kilometers (4.5 miles) long and 2.2 kilometers (1.4 miles)wide. Features as small as 9 meters (30 feet) can be discerned, providing a resolution which is 50 times better the previous best, taken by the Voyager spacecraft in 1979. The box drawn in the center image, a Galileo image of Io taken earlier in the mission, shows the area displayed in the new image at top. The three color images below show the volcanic region from a much higher altitude than the other images and follow a volcanic eruption observed by Galileo earlier in mission This new image targeted lava flows that erupted from the volcano Pillan. A complex mix of smooth and rough areas can be seen with clusters of pits and domes, many of which are the size of houses. The volcanic features are similar to those found on Earth and Mars. However, this combination of different types of lava flows has not been seen before in such a small area, demonstrating the variety of volcanic processes that continue to change the surface of Io. North is to the top of the pictures and the Sun illuminates the surface from the right. In the top and middle images the Sun is only a few degrees above the horizon, emphasizing topography. Galileo scientists estimate that the cliff on the left side of the image ranges from 3 to 10 meters (10 to 33 feet) high. In 1997 Galileo caught Pillan in the process of erupting. The explosion blanketed an area 400 kilometers (250 miles) in diameter with ash as seen in the series of three color images at the bottom. These images show the changes that have occurred at Pillan over the last three years (previous release) [ http://photojournal.jpl.nasa.gov/catalog/PIA02501 ]. Pillan is the new dark spot in middle color frame and the big, red ring seen in all three images is formed by the plume from the nearby volcano Pele. Galileo's camera and near-infrared mapping spectrometer measured the temperatures of the lavas during the eruption and found that they were hotter than any known eruption on Earth in the last two billion years. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/galileo [ http://www.jpl.nasa.gov/galileo ]. Background information and educational context for the images can be found at URLhttp://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]. |
|
Io imaging during Galileo's
PIA01605
Jupiter
Title |
Io imaging during Galileo's 24th orbit |
Original Caption Released with Image |
During its 14th orbit of Jupiter in March 29, 1998, NASA's Galileo spacecraft captured an image of Jupiter's moon, Io, that has the same lighting geometry that will exist during Io's close Io flyby on October 11, 1999 (the 24th orbit). The spacecraft groundtrack on Io is shown, with two-minute intervals marked by X's. The large X marks the location of closest approach, when Galileo will be just 500 kilometers (about 300 miles) above Io's surface. The curved boundary on the left marks the "terminator" or boundary between the lit day side and dark night side. Although the Pele volcano will be on the night side during the flyby, the hot lavas will be seen glowing in the dark. Other targets of interest that will be visible near closest approach are Pillan Patera, the site of dramatic surface changes [ http://photojournal.jpl.nasa.gov/catalog/PIA00744 ], Reiden Patera, Marduk, the bright plains of Colchis regio, and the rugged Dorian Montes mountains. Active volcanic plumes and high-temperature hot spots have been seen at Pele, Pillan, and Marduk. North is to the top of this image, which has a resolution of 2.6 kilometers (1.6 miles) per picture element. The image was taken at a range of 256,948 kilometers (about 160,000 miles) by the solid state imaging camera system on NASA's Galileo spacecraft. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. This image and other images and data received from Galileo are posted on the World Wide Web on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ] . Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ] . |
|
Recent Eruption at Gish Bar
PIA03884
Jupiter
Solid-State Imaging
Title |
Recent Eruption at Gish Bar Patera on Io |
Original Caption Released with Image |
This image taken by NASA's Galileo spacecraft reveals fresh lava in a wide pit named Gish Bar Patera on Jupiter's moon Io. The patera, or depression, is quite large: 106.3 kilometers (66 miles) by 115.0 kilometers (71 miles). Galileo has detected volcanic activity at this site in the past, particularly in late 1996. Galileo took this image on Oct. 16, 2001, during its 32nd orbit of Jupiter. Effects of a new eruption at Gish Bar can be seen in a comparison with images from 1999 (see figure below). The new eruption was first detected in infrared imaging by Galileo's near-infrared mapping spectrometer in August 2001. This visible-light image shows a pair of new lava flows. The largest runs to the western boundary and extends to the central and northern portions of the patera. The other flow corresponds to a secondary depression in the southeastern portion of the patera. Based on changes seen at this depression between July and October 1999, this is thought to be the site of an outburst seen by Earth-based observers in August 1999. Gish Bar Patera lies at the base of an 11-kilometer (36,000-foot) mountain at 15.6 degrees north latitude, 89.1 degrees west longitude on Io. This image was taken from a distance of 25,000 kilometers (15,500 miles) and has a resolution of 250 meters (820 feet) per pixel. The Sun is straight behind the observer, an illumination angle that minimizes shadows and emphasizes inherent brightness variations rather than topography. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. Additional information about Galileo and its discoveries is available on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Recent Eruption at Gish Bar
PIA03884
Jupiter
Solid-State Imaging
Title |
Recent Eruption at Gish Bar Patera on Io |
Original Caption Released with Image |
This image taken by NASA's Galileo spacecraft reveals fresh lava in a wide pit named Gish Bar Patera on Jupiter's moon Io. The patera, or depression, is quite large: 106.3 kilometers (66 miles) by 115.0 kilometers (71 miles). Galileo has detected volcanic activity at this site in the past, particularly in late 1996. Galileo took this image on Oct. 16, 2001, during its 32nd orbit of Jupiter. Effects of a new eruption at Gish Bar can be seen in a comparison with images from 1999 (see figure below). The new eruption was first detected in infrared imaging by Galileo's near-infrared mapping spectrometer in August 2001. This visible-light image shows a pair of new lava flows. The largest runs to the western boundary and extends to the central and northern portions of the patera. The other flow corresponds to a secondary depression in the southeastern portion of the patera. Based on changes seen at this depression between July and October 1999, this is thought to be the site of an outburst seen by Earth-based observers in August 1999. Gish Bar Patera lies at the base of an 11-kilometer (36,000-foot) mountain at 15.6 degrees north latitude, 89.1 degrees west longitude on Io. This image was taken from a distance of 25,000 kilometers (15,500 miles) and has a resolution of 250 meters (820 feet) per pixel. The Sun is straight behind the observer, an illumination angle that minimizes shadows and emphasizes inherent brightness variations rather than topography. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. Additional information about Galileo and its discoveries is available on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Zal Patera, Io, in color
PIA02527
Jupiter
Solid-State Imaging
Title |
Zal Patera, Io, in color |
Original Caption Released with Image |
The Zal Patera region of Jupiter's volcanic moon Io is shown in this combination of high-resolution black and white images taken by NASA's Galileo spacecraft on November 25, 1999 and lower resolution color images taken by Galileo on July 3, 1999. By combining both types of images, Galileo scientists can better understand the relationships between the different surface materials and the underlying geologic structures. For example, in the center toward the top of the picture, the edge of the caldera, or volcanic crater, is marked by the black flows, and it coincides with the edge of a plateau. Also, the red material(just above and to the right of the center of the image) is typically associated with regions where lava is erupting onto the surface. Here the red material follows the base of a mountain, which may indicate that sulfurous gases are escaping along a fault associated with the formation of the mountain. Scientists can use the lengths of the shadows cast to estimate the height of the mountains. They estimate that the northernmost plateau, which bounds the western edge of Zal Patera, rises up to approximately 2 kilometers (6,600 feet) high. The mountain to the south of the caldera has peaks up to approximately 4.6 kilometers (15,000 feet) high, while the small peak at the bottom of the picture is approximately 4.2 kilometers (14,000 feet) high. North is to the top of the image, which is centered at 33.7 degrees north latitude and 81.9 degrees west longitude. The higher resolution images have a sharpness of about 260 meters (or yards) per picture element, and they are illuminated from the left. These images were taken on November 25, 1999 at a range of 26,000 kilometers (16,000 miles). The color images are illuminated from almost directly behind the Galileo spacecraft. The resolution of the color images is 1.3 kilometers (0.8 miles) per picture element. They were taken on July 3, 1999 at a distance of about 130,000 kilometers (81,000 miles). The Jet Propulsion Laboratory, Pasadena, CA manages Galileo for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Galileo's Near-Infrared Mapp
PIA02509
Jupiter
Near Infrared Mapping Spectr
Title |
Galileo's Near-Infrared Mapping Spectrometer Detects Active Lava Flows at Prometheus Volcano, Io |
Original Caption Released with Image |
The active volcano Prometheus on Jupiter's moon Io was imaged by the near-infrared mapping spectrometer instrument onboard NASA's Galileo spacecraft during the close flyby of Io on October 10, 1999. The images were taken at a distance of about 15,000 kilometers (9,400 miles). The spectrometer can detect active volcanoes on Io by measuring their heat in the near-infrared wavelengths (just beyond the red end of human vision). It can also obtain information on the composition of materials on Io¹s surface using the same wavelengths. The image on the left, taken at an infrared wavelength, shows the different compositions of materials on the volcano. The dark material is thought to be silicate lava, and the white material is sulfur dioxide frost. Sulfur dioxide erupts out of this volcano as a plume and condenses into snow by the time it reaches the ground, forming a distinctive white ring around the volcano. The image on the right was taken at a longer infrared wavelength that shows heat coming out of the volcano. The hottest areas appear white and the coolest appear black. From this image, it is clear that there are two major "hot spots" (high-temperature areas) on this volcano. The hottest area (white spot on the left) corresponds to a location where images taken by Galileo's camera show a complex lava flow field. The cooler "hot spot" (green spot on the right) is located near where camera images show a newly-discovered volcanic caldera [ http://photojournal.jpl.nasa.gov/catalog/PIA02508 ]. The high temperatures at both hot spots are probably due to active lava flowing on the surface. Previous observations of the Prometheus region by the spectrometer, taken when the spacecraft was at much greater distances from Io, showed Prometheus to be a persistently active volcano. Temperatures calculated from spectrometer data areas high as about 800 degrees Celsius or 1,500 Fahrenheit), similar to those of cooling lava flows in Hawaii. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at http://galileo.jpl.nasa.gov/ [ http://galileo.jpl.nasa.gov/ ] Background information and educational context for the images can be found athttp://galileo.jpl.nasa.gov/images/images.html [ http://galileo.jpl.nasa.gov/images/images.html ] |
|
Mountains on Io
PIA02520
Jupiter
Solid-State Imaging
Title |
Mountains on Io |
Original Caption Released with Image |
This image taken by NASA's Galileo spacecraft during its close flyby of Jupiter's moon Io on November 25, 1999 shows some of the curious mountains found there. The Sun is illuminating the scene from the left, and because it is setting, the Sun exaggerates the shadows cast by the mountains. By measuring the lengths of these shadows, Galileo scientists can estimate the height of the mountains. The mountain just left of the middle of the picture is 4 kilometers (13,000 feet) high and the small peak to the lower left is 1.6 kilometers (5,000 feet) high. These mountains, like others imaged during a previous Galileo flyby of Io in October [ http://photojournal.jpl.nasa.gov/catalog/PIA02513 ], seem to be in the process of collapsing. Huge landslides have left piles of debris at the bases of the mountains. The ridges that parallel their margins are also indicative of material moving down the mountainsides due to gravity. North is to the upper left of the picture. The image, centered at -8.1degrees latitude and 78.7 degrees longitude, covers an area approximately 210-by-110 kilometers (130-by-70 miles). The resolution is 267 meters (880 feet) per picture element. The image was taken at a range of 25,000 kilometers (16,000 miles) by Galileo's onboard camera. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Earth-based images of the Fa
PIA02523
Jupiter
Title |
Earth-based images of the Fall 1999 Loki Eruption |
Original Caption Released with Image |
These false-color images of Io and Jupiter were taken with the NASA Infrared Telescope Facility at Mauna Kea, Hawaii, as part of a campaign to support closeup Io observations by NASA's Galileo spacecraft. These and other Earth-based observations show that Io's most powerful volcano, Loki, began one of its periodic major eruptions about a month before Galileo's October Io flyby, and that the eruption was continuing during the Galileo flyby. These infrared images (taken at a wavelength of 3.8 microns) show Sunlight reflected from the edge of Jupiter's disk on the left-hand side, and the heat from several glowing volcanoes on Io on the right. Io is in Jupiter's shadow, so no Sunlight falls on it -- the volcanoes are all we see. On August 9, 1999 (left), several volcanoes glowed faintly with roughly equal brightness. However, on October 10, 1999, roughly 20 hours before Galileo flew past, a single volcano, Loki, dominated the image. Loki brightened by a factor of ten in the period between these images. Other observations from the NASA Infrared Telescope and from Wyoming Infrared Telescope near Laramie operated by the University of Wyoming show that most of this brightening occurred during September. Earth-based observations since the 1980s have shown that these periodic bright eruptions are typical behavior for Loki. They occur about once per year and last several months. Galileo has given us our first chance to see one of these eruptions up close. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Sources of Volcanic Plumes N
PIA02565
Jupiter
Solid-State Imaging
Title |
Sources of Volcanic Plumes Near Prometheus |
Original Caption Released with Image |
Prometheus is the "Old Faithful" of the many active volcanoes on Jupiter's moon Io. A broad, umbrella-shaped plume of gas and dust has been spotted above Prometheus by NASA's Voyager and Galileo spacecraft every time the viewing conditions have been favorable. The volcano is surrounded by a prominent circular ring of bright sulfur dioxide apparently deposited by the plume. However, the origin of Prometheus' plume is a long-standing mystery: Where is the vent that is the source of all the gas and dust? Some clues are offered by this false-color picture with a resolution of 170 meters (186 yards) per picture element, which was taken by Galileo on February 22, 2000. To the right is a dark, semi-circular, lava-filled caldera. South of it lies a fissure from which dark lava has flowed toward the west (left). The lava flow extends 90 kilometers (54 miles) from the source. Bright patches probably composed of sulfur dioxide can be seen in several places along the flow's margins. Two of these patches (near the top left edge of the dark lava, at the farthest reaches of the flow) display faint blue hazes, apparently produced by airborne dust entrained within plumes. Both of these spots are locations of newly erupted lava that has encroached on the surrounding plains since Galileo last imaged the region in October 1999. Galileo scientists are now studying whether heating of the volatile, sulfur dioxide-rich plains by encroaching hot lava might account for the persistent plume activity observed near Prometheus. The Jet Propulsion Laboratory, Pasadena, Calif. manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology in Pasadena. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Close-up of Prometheus, Io (
PIA02505
Jupiter
Solid-State Imaging
Title |
Close-up of Prometheus, Io (color) |
Original Caption Released with Image |
-1999) and NASA's Voyager spacecraft (1979). No other volcano on Io has been so stable in its behavior. However, between the Voyager flybys and the time of Galileo's arrival at Jupiter, the source of the plume has shifted about 70 kilometers (44 miles) to the west. This false color close-up was taken of Prometheus using the near-infrared, green and violet filters (slightly greater than the visible range) of the spacecraft's camera and processed to enhance subtle color variations. The long-lived plume has produced a ring-like deposit of bright white and yellow material that is likely to be rich in sulfur dioxide frost. Also note the denser jets in the plume that point like spokes to its source. Galileo scientists do not yet know whether this long-lived plume is erupting from a vent at the west end of the lava flow, or if the plume is being produced by the advancing lava as it flows over ground rich in sulfur dioxide. Galileo will acquire black and white images of the Prometheus at resolutions between 35 to 70 meters (120 to 230 feet) per picture element and color images at resolutions of about 230 meters (750 feet) per picture element during its close flyby of Jupiter's moon Io on the evening of October 10, 1999 (Pacific time). These images will be important in understanding how volcanic plumes form on Io. In particular, we are interested in seeing if the plume material is escaping from Io's interior or from the surface at the front of active lava flows. These new images may help explain why Prometheus has been so faithfully active. North is to the top of the picture, and the Sun illuminates the surface from almost directly behind the spacecraft. This illumination is good for imaging color variations, but poor for imaging topographic shading. However, some topography is visible here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and rugged areas over parts of Io. The image is centered at 2 degrees south latitude and 154 degrees west longitude. The images were taken at a distance of about 130,000 kilometers (81,000 miles) by Galileo's camera and have a resolution of 1.3 kilometers or 0.8 miles per picture element. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., The volcano called Prometheus, found on Jupiter's moon Io, could be called the Old Faithful of the outer solar system, because its volcanic plume has been visible every time it has been observed since 1979. This particular image, one of the highest-resolution pictures ever taken of Io, was obtained by NASA's Galileo spacecraft as it approached Io on July 3, 1999. The volcanic plume of Prometheus has been visible during observations by Galileo (1996 [ http://photojournal.jpl.nasa.gov/catalog/PIA00495 ] |
|
Close-up of Prometheus, Io (
PIA02505
Jupiter
Solid-State Imaging
Title |
Close-up of Prometheus, Io (color) |
Original Caption Released with Image |
-1999) and NASA's Voyager spacecraft (1979). No other volcano on Io has been so stable in its behavior. However, between the Voyager flybys and the time of Galileo's arrival at Jupiter, the source of the plume has shifted about 70 kilometers (44 miles) to the west. This false color close-up was taken of Prometheus using the near-infrared, green and violet filters (slightly greater than the visible range) of the spacecraft's camera and processed to enhance subtle color variations. The long-lived plume has produced a ring-like deposit of bright white and yellow material that is likely to be rich in sulfur dioxide frost. Also note the denser jets in the plume that point like spokes to its source. Galileo scientists do not yet know whether this long-lived plume is erupting from a vent at the west end of the lava flow, or if the plume is being produced by the advancing lava as it flows over ground rich in sulfur dioxide. Galileo will acquire black and white images of the Prometheus at resolutions between 35 to 70 meters (120 to 230 feet) per picture element and color images at resolutions of about 230 meters (750 feet) per picture element during its close flyby of Jupiter's moon Io on the evening of October 10, 1999 (Pacific time). These images will be important in understanding how volcanic plumes form on Io. In particular, we are interested in seeing if the plume material is escaping from Io's interior or from the surface at the front of active lava flows. These new images may help explain why Prometheus has been so faithfully active. North is to the top of the picture, and the Sun illuminates the surface from almost directly behind the spacecraft. This illumination is good for imaging color variations, but poor for imaging topographic shading. However, some topography is visible here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and rugged areas over parts of Io. The image is centered at 2 degrees south latitude and 154 degrees west longitude. The images were taken at a distance of about 130,000 kilometers (81,000 miles) by Galileo's camera and have a resolution of 1.3 kilometers or 0.8 miles per picture element. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., The volcano called Prometheus, found on Jupiter's moon Io, could be called the Old Faithful of the outer solar system, because its volcanic plume has been visible every time it has been observed since 1979. This particular image, one of the highest-resolution pictures ever taken of Io, was obtained by NASA's Galileo spacecraft as it approached Io on July 3, 1999. The volcanic plume of Prometheus has been visible during observations by Galileo (1996 [ http://photojournal.jpl.nasa.gov/catalog/PIA00495 ] |
|
Io in True Color
Title |
Io in True Color |
Explanation |
The strangest moon in the Solar System [ http://www.nineplanets.org/overview.html ] is bright yellow. This picture [ http://photojournal.jpl.nasa.gov/cgi-bin/PIAGenCatalogPage.pl?PIA02308 ], showing Io's true colors, was taken in 1999 July by the Galileo spacecraft [ http://www.jpl.nasa.gov/galileo/spacecraft.html ] currently orbiting Jupiter. Io's colors derive from sulfur [ http://chemlab.pc.maricopa.edu/periodic/S.html ] and molten silicate rock [ http://www.windows.ucar.edu/cgi- bin/tour_def/glossary/silicate_rock.html ]. The unusual surface of Io [ http://antwrp.gsfc.nasa.gov/apod/ap961029.html] is kept very young by its system of active volcanoes [ http://antwrp.gsfc.nasa.gov/apod/ap960805.html ]. The intense tidal gravity [ http://www.clupeid.demon.co.uk/tides/simple.html ] of Jupiter [ http://www.solarviews.com/eng/jupiter.htm ] stretches Io [ http://antwrp.gsfc.nasa.gov/apod/ap981016.html ] and damps wobbles caused by Jupiter's other Galilean moons [ http://www.jpl.nasa.gov/galileo/ganymede/discovery.html ]. The resulting friction [ http://www.pa.uky.edu/~phy211/Friction_book.html ] greatly heats Io [ http://antwrp.gsfc.nasa.gov/apod/ap980706.html ]'s interior, causing molten rock [ http://cmex.arc.nasa.gov/data/catalog/VolcanismOnMars/MoltenRock.html ] to explode through the surface. Io's volcanoes [ http://antwrp.gsfc.nasa.gov/apod/ap000606.html ] are so active that they are effectively turning the whole moon inside out. Some of Io [ http://www.nineplanets.org/io.html ]'s volcanic lava is so hot it glows in the dark [ http://adsabs.harvard.edu/cgi-bin/nph- bib_query?bibcode=1998Icar..135..181M ]. |
|
A New Hot Spot on Northern I
PIA03602
Jupiter
Near Infrared Mapping Spectr
Title |
A New Hot Spot on Northern Io |
Original Caption Released with Image |
NASA's Galileo spacecraft has returned infrared imagery of a new hot spot on Jupiter's moon Io that was the source of a towering plume in August 2001, indicating a sulfur-dioxide concentration that may have been fallout from the plume. Galileo's near-infrared mapping spectrometer captured the image on the left during an Oct. 16, 2001 flyby of Io. Coloring indicates the intensity of glowing at a wavelength of 4.1 microns. Yellow, red, and white represent high temperatures. Black is where the near-infrared glow was so intense the image was saturated. Greens and blues are cold. The visible-light image on the right was obtained by Galileo's camera in 1999, before any volcanic activity was seen at this site. The first sign of activity came in August 2001, when Galileo detected an infrared hot spot and the tallest volcanic plume ever seen at Io. The dark blue band north of the hot spot in the new infrared image represents a concentration of sulfur-dioxide, which has a strong signature in the infrared. The sulfur-dioxide is thought to be from the fallout of the plume. The image shows high temperatures corresponding to yellow flows in the center of the visible-light image, and from a small caldera at the 8 o'lock position. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. Additional information about Galileo and its discoveries is available on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Earth-Based Observations of
PIA02522
Jupiter
Title |
Earth-Based Observations of a Fire Fountain on Io |
Original Caption Released with Image |
This false-color infrared image of the Sunlit disk of Jupiter's moon Io was taken at the NASA Infrared Telescope Facility at Mauna Kea, Hawaii, a few hours after a November 25, 1999 close Io flyby by NASA's Galileo spacecraft. The bright spot at the 1 o'clock position is the same lava fountain seen close-up by Galileo's camera, but in this case it is seen from Earth at a distance of 630 million kilometers (390 million miles). When this image was taken, the fiery lava fountain was almost on the edge of Io's disk and about to disappear from view due to Io's rotation. The lava fountain was seen from an angle just 5.5 degrees above horizontal. Its prominence when seen so obliquely confirms that this eruption is indeed composed of fiery fountains rising up above the surface, horizontal lava flows would be much harder to see from so close to the horizontal. Astronomers making Earth-based telescopic observations see a bright spot like this one somewhere on Io only about 20 percent of the time, so the Galileo team was fortunate to catch one in its narrow field of view. Astronomer John Spencer, who has watched this type of eruption for many years on Io from Mauna Kea, said, "We thought that some of these eruptions might be due to lava fountains, but it's incredible to see that idea confirmed so spectacularly by Galileo." The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Europa's Jupiter-Facing Hemi
PIA02528
Jupiter
Solid-State Imaging
Title |
Europa's Jupiter-Facing Hemisphere |
Original Caption Released with Image |
This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained by the camera onboard NASA's Galileo spacecraft on November 25, 1999 during the spacecrafts 25th orbit of Jupiter. The new images have resolutions of about 1 kilometer (0.6 miles) per picture element. Lower resolution context was provided by images acquired during earlier Galileo orbits. In the earlier images, the resolution is 7 and 13 kilometers (4 and 8 miles) per picture element, respectively. Numerous linear features in the center of the mosaic and toward the poles may have formed in response to tides strong enough to fracture Europa's icy surface. Some of these features extend for over 1,500 kilometers (900 miles). Darker regions near the equator on the eastern (right) and western (left) limb may be vast areas of chaotic terrain. Bright white spots near the western limb are the ejecta blankets of young impact craters. North is to the top of the picture and the sun illuminates the surface from the left. The image, centered at 0 latitude and 10 longitude, covers an area approximately 2,500 by 3,000 kilometers. The finest details that can discerned in this picture are about 2 kilometers across (about 1,550 by 1,860 miles). The images were taken by Galileo's camera on November 25, 1999 when the spacecraft was 94,000 kilometers (58,000 miles) from Europa. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Galileo NIMS Observes Amiran
PIA02516
Jupiter
Near Infrared Mapping Spectr
Title |
Galileo NIMS Observes Amirani |
Original Caption Released with Image |
This image is the highest-resolution thermal, or heat image, ever made of Amirani, a large volcano on Jupiter's moon Io. It was taken on October 10, 1999, by the near-infrared mapping spectrometer onboard NASA's Galileo spacecraft. Amirani is on the side of Io that permanently faces away from Jupiter. This image of Amirani was taken at a distance of less than 25,000 kilometers (16,000 miles). The picture scale is approximately 6.5 kilometers (4 miles) per spectrometer pixel. The center and right images show views of Amirani as seen by the spectrometer at two wavelengths, 1.0 and 4.6 microns. These images can be compared with a visible wavelength image (on the left) of the same area obtained by Galileo's camera during a previous orbit. The visible light image shows extensive lava flows and a dark-floored caldera with associated bright red deposits of material fed from the volcano. The spectrometer observation was made in daylight. The center image, taken at a wavelength of 1 micron, shows light and dark areas on the surface that can be used to line up the spectrometer data with the camera image. The image on the right shows the same area at a wavelength of 4.6 microns, which reveals the thermal emission from three separate volcanic areas. The locations of these three "hot spots" correspond to the darkest features in the camera image, reinforcing a previously held belief by Galileo scientists that there is a correlation between the dark areas and the hot spots. The three spectrometer hot spots are located at the eastern edge of the caldera at the bottom of the camera image, and two locations along the massive Amirani flows. These are most likely active lava flows on the surface. Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995 on a mission to study the giant planet, its largest moons and its magnetic environment. JPL manages the mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Culann Patera, Io, in false
PIA02535
Jupiter
Solid-State Imaging
Title |
Culann Patera, Io, in false color |
Original Caption Released with Image |
Culann Patera, one of the most colorful volcanic centers on Io, is the centerpiece of this mosaic of the best high-resolution, color view of Io yet returned by NASA's Galileo spacecraft. The picture was constructed from images taken through the red, green, and violet filters of Galileo camera and has been processed to enhance the color variations. The resolution is about 200 meters (or yards) per picture element, and north is to the top. The color mosaic shows the complex relationships between the diffuse red deposit, the more confined green deposit, and the various colored lava flows. Culanns central caldera (above and to the right of center) has a highly irregular, scalloped margin and a green-colored floor. Lava flows spill out of the caldera on all sides. A dark red, curving line extending northwest from the southwestern tip of the caldera may mark a crusted-over lava tube feeding the dark (and hot) silicate flows to the northwest. Unusual dark red flows to the southeast of the caldera may be sulfur flows or silicate flows whose surfaces have been modified. The diffuse red material around the caldera is believed to be a compound of sulfur deposited from a plume of gas. Culanns caldera and several lava flows extending from the caldera are coated by greenish materials. Green material can also be seen in the caldera to the lower right of the image, named Tohil Patera. The greenish material often has sharp boundaries, so it is apparently confined to the caldera floor and the dark flows. Galileo scientists are investigating whether the greenish material forms as a coating of sulfur-rich material on warm silicate lavas. The images were taken on November 25, 1999 during Galileo's 25th orbit at a distance of 20,000 kilometers (12,500 miles) from Io. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at http://galileo.jpl.nasa.gov/gallery/io.cfm [ http://galileo.jpl.nasa.gov/gallery/io.cfm ]. |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (false co
PIA02309
Jupiter
Solid-State Imaging
Title |
Global image of Io (false color) |
Original Caption Released with Image |
http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera which have been processed to enhance more subtle color variations. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A true color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02308 ] of the mosaic has been created to show how Io would appear to the human eye. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout locations), (Cutout A). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this mosaic to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ]. Background information and educational context for the images can be found at URL |
|
Global image of Io (true col
PIA02308
Jupiter
Solid-State Imaging
Title |
Global image of Io (true color) |
Original Caption Released with Image |
. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., NASA's Galileo spacecraft acquired its highest resolution images of Jupiter's moon Io on 3 July 1999 during its closest pass to Io since orbit insertion in late 1995. This color mosaic uses the near-infrared, green and violet filters (slightly more than the visible range) of the spacecraft's camera and approximates what the human eye would see. Most of Io's surface has pastel colors, punctuated by black, brown, green, orange, and red units near the active volcanic centers. A false color version [ http://photojournal.jpl.nasa.gov/catalog/PIA02309 ] of the mosaic has been created to enhance the contrast of the color variations. The improved resolution reveals small-scale color units which had not been recognized previously and which suggest that the lavas and sulfurous deposits are composed of complex mixtures (Cutout A of false color image). Some of the bright (whitish), high-latitude (near the top and bottom) deposits have an ethereal quality like a transparent covering of frost (Cutout B of false color image). Bright red areas were seen previously only as diffuse deposits. However, they are now seen to exist as both diffuse deposits and sharp linear features like fissures (Cutout C of false color image). Some volcanic centers have bright and colorful flows, perhaps due to flows of sulfur rather than silicate lava (Cutout D of false color image). In this region bright, white material can also be seen to emanate from linear rifts and cliffs. Comparison of this image to previous Galileo images [ http://www.jpl.nasa.gov/galileo/sepo/atjup/io/color.html ] reveals many changes due to the ongoing volcanic activity. Galileo will make two close passes of Io beginning in October of this year. Most of the high-resolution targets for these flybys are seen on the hemisphere shown here. North is to the top of the picture and the sun illuminates the surface from almost directly behind the spacecraft. This illumination geometry is good for imaging color variations, but poor for imaging topographic shading. However, some topographic shading can be seen here due to the combination of relatively high resolution (1.3 kilometers or 0.8 miles per picture element) and the rugged topography over parts of Io. The image is centered at 0.3 degrees north latitude and 137.5 degrees west longitude. The resolution is 1.3 kilometers (0.8 miles) per picture element. The images were taken on 3 July 1999 at a range of about 130,000 kilometers (81,000 miles) by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft during its twenty-first orbit. The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ] |
|
Migrating Volcanic Plumes on
PIA02503
Jupiter
Solid-State Imaging
Title |
Migrating Volcanic Plumes on Io |
Original Caption Released with Image |
. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]., This set of four images, taken by NASA's Galileo spacecraft, shows a sequence of volcanic activity on Jupiter's moon Io over the last two years. As seen from left to right, the feature called Masubi [ http://photojournal.jpl.nasa.gov/catalog/PIA02502 ], was observed during Galileo¹s 9th, 10th, 15th, and 22nd orbits of Jupiter. These images show that a plume deposit from Masubi appears in September 1997 and has disappeared eight months later, only to reappear in a different place little more than a year later. The deposit, which originated from a volcanic vent, contains snow rich in sulfur dioxide. Plume deposits are formed when material is blown out of a vent in a continuous, geyser-like, high-velocity eruption, with the material then falling back to Io's surface under the influence of gravity. When it hits the surface, it forms a symmetric ring surrounding the plume vent. The plume deposits are transient features, present only while the associated plume is active and for a brief time afterwards. This sequence of images suggests that the plume deposit visible during Galileo¹s 10th orbit was almost completely gone by the time of its 15th orbit, eight months later. This illustrates how ephemeral the deposits are. Scientists are intrigued by the speed at which the active plume location seems to have migrated. The distance between the centers of the deposits visible in the images from the 10th orbit, second from left, and 22nd orbit, the image on the right, (occurring over a period of less than two years), is about 125 kilometers (78 miles). The plume deposit has changed in size as well as location. The four arrows are the same size and orientation in the images from the 10th and 22nd orbit, showing that the dark ring of material is larger during the 22nd orbit than it was in the 10th orbit. These images were taken through the violet filter of Galileo¹s camera. North is to the top and the Sun illuminates the surface from the left in the images from June 1997 and August 1999, and from the right in the images from September 1997 and May 1998. The images are centered at 50 degrees south latitude and 54 degrees west longitude and cover an area approximately 750 kilometers (470 miles) wide and 1,050 kilometers (660 miles) high. From left to right, the image resolutions are: 16 kilometers (10 miles), 10 kilometers (6.2 miles), 14 kilometers (8 miles), and, 16 kilometers (10 miles) per picture element. From left to right, the images were taken by Galileo¹s camera on the following dates from the following distances from Io: June 17, 1997, at 816,500 kilometers (507,300 miles), September 18, 1997, at 1,046,500 kilometers (650,300 miles), May 30, 1998, at 1,398,500 kilometers (869,000 miles), and August 13, 1999, at 1,565,000 kilometers (972,400). The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is a division of the California Institute of Technology, Pasadena, CA. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at http://galileo.jpl.nasa.gov [ http://galileo.jpl.nasa.gov ] |
|
Eruption at Tvashtar Catena
PIA02584
Jupiter
Solid-State Imaging
Title |
Eruption at Tvashtar Catena on Io |
Original Caption Released with Image |
. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C., This pair of images taken by NASA's Galileo spacecraft captures a dynamic eruption at Tvashtar Catena, a chain of volcanic bowls on Jupiter's moon Io. They show a change in the location of hot lava over a period of a few months in 1999 and early 2000. The image on the left uses data obtained on Nov. 26 and July 3, 1999, at resolutions of 183 meters (600 feet) and 1.3 kilometers (0.8 miles) per pixel, respectively. The red and yellow lava flow itself is an illustration based upon imaging data. The image on the right is a composite using a five-color observation made on Feb. 22, 2000, at 315 meters (1030 feet) per pixel. These are among the most fortuitous observations made by Galileo because this style of volcanism is too unpredictable and short-lived to plan to photograph. Short-lived bursts of volcanic activity on Io had been previously detected from Earth-based observations, but interpreting the style of volcanic activity from those lower-resolution views was highly speculative. These Galileo observations confirm hypotheses that the initial, intense thermal output comes from active lava fountains. Galileo's high-resolution observations of volcanic activity on Io have also confirmed other hypotheses based on earlier, low-resolution data. These include interpretations of slowly spreading lava flows at Prometheus and Amirani and an active lava lake at Pele. These tests of earlier hypotheses increase scientists' confidence in interpreting volcanic activity seen in low-resolution remote sensing data of Earth as well as Io. However, these data are still of insufficient resolution to adequately test the more quantitative models that have been applied to volcanic eruptions on Earth and Io. These images also show other geologic features on Io, such as the scalloped margins of the plateau to the northeast of the active lavas. These margins appear to have formed by sapping, a process usually associated with springs of water. Liquid sulfur dioxide might be the fluid responsible for sapping on Io. A better understanding of sapping on Io will influence how scientists interpret similar features on Mars(where the viability of carbon dioxide or water as the sapping fluid remains controversial). The individual images in this composite can be viewed separately in the PIA02545 [ http://photojournal.jpl.nasa.gov/catalog/PIA02545 ] (left hand image) and PIA02550 [ http://photojournal.jpl.nasa.gov/catalog/PIA02550 ] (right hand image) photojournal entries. Images and data received from Galileo are posted on the Galileo mission home page at http://www.jpl.nasa.gov/galileo [ http://www.jpl.nasa.gov/galileo ]. Background information and educational context for the images can be found athttp://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ] |
|
Tohil Mons, Io
PIA02586
Jupiter
Solid-State Imaging
Title |
Tohil Mons, Io |
Original Caption Released with Image |
Images taken at different times and from different positions by NASA's Galileo spacecraft provide information about the three-dimensional structure of a large mountain named Tohil Mons on Jupiter's moon Io. The first part of this image package is a mosaic combining detailed images that were taken a year ago by Galileo on Feb. 22, 2000, with a lower-resolution image of a wider area taken on June 30, 1999. The sharper portion has a resolution of 165 meters (540 feet) per picture element. The lower-resolution context image is at 1.3 kilometers (0.8 mile) per picture element. North is to the top of the image. The Sun was almost directly behind the spacecraft, so shadows aren't visible. Because topography is difficult to distinguish on Io unless the Sun is low enough to cast shadows, the second part of this release is a stereo image of Tohil Mons that was created from two mosaics acquired on Oct.11, 1999, and Feb. 22, 2000. When viewed with red-blue glasses, it illustrates the three-dimensional shape of the mountain and two nearby volcanic depressions, which are called paterae. The largest patera lies along the northeastern margin of the mountain. The stereo observation reveals that the smaller patera with the dark floor is surrounded by mountainous walls. The black lines are areas where data were not acquired. To the southeast of the peak, many bright lines trending northwest-southeast can be seen. Since the two individual images were taken when the Sun was quite high, it was difficult to determine the relationship between the bright material and the topography. The stereo image reveals that the light material is concentrated at the bases of cliffs. This series of cliffs appears step-like, which may indicate layering in Io's crust. Two additional figures describing the three-dimensional shape of the Tohil Mons region are also included. The first of these is a topographic representation of what Tohil Mons looks like when seen from the northeast. The topography has been vertically exaggerated. The peak's height is about 5.4 kilometers, plus or minus 1.1 kilometer (about 18,000 feet, give or take 3,600 feet). The second figure shows two views in which Tohil Mons has been outlined in red. The top image was taken at low resolution and a low Sun angle during Galileo's third orbit, in 1996. Because the Sun is low, topographic features on the mountain can be recognized from the shadows they cast. The two paterae and the peak of the mountain are labeled. The bottom image was taken on Feb. 22, 2000, at higher resolution and a higher Sun angle. The topography is almost indistinguishable, but many more details can be discerned. By combining several observations in this manner, Galileo scientists are able to study Io's mountains and to learn about their evolution and their relationship to Io's volcanoes., The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page athttp://www.jpl.nasa.gov/galileo [ http://www.jpl.nasa.gov/galileo ]. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]. |
|
Tohil Mons, Io
PIA02586
Jupiter
Solid-State Imaging
Title |
Tohil Mons, Io |
Original Caption Released with Image |
Images taken at different times and from different positions by NASA's Galileo spacecraft provide information about the three-dimensional structure of a large mountain named Tohil Mons on Jupiter's moon Io. The first part of this image package is a mosaic combining detailed images that were taken a year ago by Galileo on Feb. 22, 2000, with a lower-resolution image of a wider area taken on June 30, 1999. The sharper portion has a resolution of 165 meters (540 feet) per picture element. The lower-resolution context image is at 1.3 kilometers (0.8 mile) per picture element. North is to the top of the image. The Sun was almost directly behind the spacecraft, so shadows aren't visible. Because topography is difficult to distinguish on Io unless the Sun is low enough to cast shadows, the second part of this release is a stereo image of Tohil Mons that was created from two mosaics acquired on Oct.11, 1999, and Feb. 22, 2000. When viewed with red-blue glasses, it illustrates the three-dimensional shape of the mountain and two nearby volcanic depressions, which are called paterae. The largest patera lies along the northeastern margin of the mountain. The stereo observation reveals that the smaller patera with the dark floor is surrounded by mountainous walls. The black lines are areas where data were not acquired. To the southeast of the peak, many bright lines trending northwest-southeast can be seen. Since the two individual images were taken when the Sun was quite high, it was difficult to determine the relationship between the bright material and the topography. The stereo image reveals that the light material is concentrated at the bases of cliffs. This series of cliffs appears step-like, which may indicate layering in Io's crust. Two additional figures describing the three-dimensional shape of the Tohil Mons region are also included. The first of these is a topographic representation of what Tohil Mons looks like when seen from the northeast. The topography has been vertically exaggerated. The peak's height is about 5.4 kilometers, plus or minus 1.1 kilometer (about 18,000 feet, give or take 3,600 feet). The second figure shows two views in which Tohil Mons has been outlined in red. The top image was taken at low resolution and a low Sun angle during Galileo's third orbit, in 1996. Because the Sun is low, topographic features on the mountain can be recognized from the shadows they cast. The two paterae and the peak of the mountain are labeled. The bottom image was taken on Feb. 22, 2000, at higher resolution and a higher Sun angle. The topography is almost indistinguishable, but many more details can be discerned. By combining several observations in this manner, Galileo scientists are able to study Io's mountains and to learn about their evolution and their relationship to Io's volcanoes., The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page athttp://www.jpl.nasa.gov/galileo [ http://www.jpl.nasa.gov/galileo ]. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]. |
|
Tohil Mons, Io
PIA02586
Jupiter
Solid-State Imaging
Title |
Tohil Mons, Io |
Original Caption Released with Image |
Images taken at different times and from different positions by NASA's Galileo spacecraft provide information about the three-dimensional structure of a large mountain named Tohil Mons on Jupiter's moon Io. The first part of this image package is a mosaic combining detailed images that were taken a year ago by Galileo on Feb. 22, 2000, with a lower-resolution image of a wider area taken on June 30, 1999. The sharper portion has a resolution of 165 meters (540 feet) per picture element. The lower-resolution context image is at 1.3 kilometers (0.8 mile) per picture element. North is to the top of the image. The Sun was almost directly behind the spacecraft, so shadows aren't visible. Because topography is difficult to distinguish on Io unless the Sun is low enough to cast shadows, the second part of this release is a stereo image of Tohil Mons that was created from two mosaics acquired on Oct.11, 1999, and Feb. 22, 2000. When viewed with red-blue glasses, it illustrates the three-dimensional shape of the mountain and two nearby volcanic depressions, which are called paterae. The largest patera lies along the northeastern margin of the mountain. The stereo observation reveals that the smaller patera with the dark floor is surrounded by mountainous walls. The black lines are areas where data were not acquired. To the southeast of the peak, many bright lines trending northwest-southeast can be seen. Since the two individual images were taken when the Sun was quite high, it was difficult to determine the relationship between the bright material and the topography. The stereo image reveals that the light material is concentrated at the bases of cliffs. This series of cliffs appears step-like, which may indicate layering in Io's crust. Two additional figures describing the three-dimensional shape of the Tohil Mons region are also included. The first of these is a topographic representation of what Tohil Mons looks like when seen from the northeast. The topography has been vertically exaggerated. The peak's height is about 5.4 kilometers, plus or minus 1.1 kilometer (about 18,000 feet, give or take 3,600 feet). The second figure shows two views in which Tohil Mons has been outlined in red. The top image was taken at low resolution and a low Sun angle during Galileo's third orbit, in 1996. Because the Sun is low, topographic features on the mountain can be recognized from the shadows they cast. The two paterae and the peak of the mountain are labeled. The bottom image was taken on Feb. 22, 2000, at higher resolution and a higher Sun angle. The topography is almost indistinguishable, but many more details can be discerned. By combining several observations in this manner, Galileo scientists are able to study Io's mountains and to learn about their evolution and their relationship to Io's volcanoes., The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page athttp://www.jpl.nasa.gov/galileo [ http://www.jpl.nasa.gov/galileo ]. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo [ http://www.jpl.nasa.gov/galileo/sepo ]. |
|
|