|
Search Results: All Fields similar to 'Dryden or Langley' and When equal to '1998'
|
Printer Friendly |
Lockheed Electra - aerial vi
Lockheed Electra - takeoff f
Photo Description |
Joel Sitz is the project manager of the X-43 experimental aircraft [ http://www.dfrc.nasa.gov/Gallery/Photo/X-43A/index.html ] at NASA's Dryden Flight Research Center, Edwards, California, a position he has held since July 1998. Sitz is responsible for the overall flight research element of the Hyper-X Program, managed by the NASA Langley Research Center, Hampton, Va. The X-43A vehicle will feature the first free flight of an airframe-integrated, hypersonic Supersonic Combustion RamJet (SCRAMJET) engine. Before assuming his present assignment, Sitz was deputy program manager at Dryden for NASA?s Aviation Safety Program from 1997 to 1998. He was also the project manager of the F-18 Systems Research Aircraft (SRA) and the L-1011 Adaptive Performance Optimization (APO) Project. His responsibilities included the development and flight evaluation of several advanced aircraft sensors and systems technologies that will be used to improve both the safety and performance of future military and commercial transport aircraft. Previous to joining NASA in 1989 as an aerospace engineer, Sitz was employed by Honeywell Military Avionics Division. At NASA he became a software systems engineer on the X-29 Forward Swept Wing Project, responsible for real-time flight control software design, development and test. At Dryden, Sitz has developed and performed research in advanced automated test tools to support flight control system validation for flight research projects including the X-29, F-18 High Angle of Attack and X-31 flight research programs. He was the deputy project manager for the F-16XL #2 Supersonic Laminar Flow Control Project. He was also the project manager responsible for transfer of Dryden business system operations from NASA Ames Research Center, Moffett Field, Calif., to NASA Marshall Space Flight Center, Huntsville, Ala., when Dryden became an independent NASA center in 1994. As a member of Dryden?s Procedures and Policies Committee from 1990 to 1997, Sitz was responsible for updating Dryden?s Basic Operations Manual. Sitz graduated from the University of North Dakota in 1982 with a bachelor of science degree in computer science. He received a master of science degree in engineering management in 1989 from Golden Gate University of San Francisco, Calif. |
Project Description |
unknown |
Photo Date |
March 19, 2004 |
|
Lockheed Electra - animation
Lockheed Electra - takeoff f
Title |
Lockheed Electra - takeoff from runway |
Description |
This 15-second movie clip shows the National Science Foundation Lockheed Electra rotate, lift off, and stow its landing gear on takeoff. On March 24, 1998, an L-188 Electra aircraft owned by the National Science Foundation, Arlington, Virginia and operated by the National Center for Atmospheric Research, Boulder, Colorado, flew near Boulder with an Airborne Coherent LiDAR (Light Detection and Ranging) for Advanced In-flight Measurement. This aircraft was on its first flight to test its ability to detect previously invisible forms of clear air turbulence. Coherent Technologies Inc., Lafayette, Colorado, built the LiDAR device for the NASA Dryden Flight Research Center, Edwards, California. NASA Dryden participated in this effort as part of the NASA Aviation Safety Program, for which the lead center was Langley Research Center, Hampton, Virginia. Results of the test indicated that the device did successfully detect the clear air turbulence. |
Date |
01.01.1999 |
|
Pegasus Mated under Wing of
Photo Description |
A close-up view of the Pegasus space-booster attached to the wing pylon of NASA?s B-52 launch aircraft at NASA's Dryden Flight Research Center, Edwards, California. The Pegasus rocket booster was designed as a way to get small payloads into space orbit more easily and cost-effectively. It has also been used to gather data on hypersonic flight. |
Project Description |
Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Photo Date |
August 2, 1994 |
|
PHYSX Glove Test
Photo Description |
A mock-up of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental "glove" undergoes hot-loads tests at NASA's Dryden Flight Research Center, Edwards, California. The thermal ground test simulates heats and pressures the wing glove will experience at hypersonic speeds. Quartz heat lamps subject this model of a Pegasus booster rocket's right wing glove to the extreme heats it will experience at speeds approaching Mach 8. The glove has a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experimental flight. |
Project Description |
Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Photo Date |
September 13, 1995 |
|
F-8 SCW on ramp with test pi
Photo Description |
A Vought F-8A Crusader was selected by NASA as the testbed aircraft (designated TF-8A) to install an experimental Supercritical Wing (SCW) in place of the conventional wing. The unique design of the Supercritical Wing reduces the effect of shock waves on the upper surface near Mach 1, which in turn reduces drag. In this photograph the TF-8A Crusader with Supercritical Wing is shown on the ramp with project pilot Tom McMurtry standing beside it. McMurtry received NASA's Exceptional Service Medal for his work on the F-8 SCW aircraft. He also flew the AD-1, F-15 Digital Electronic Engine Control, the KC-130 winglets, the F-8 Digital Fly-By-Wire and other flight research aircraft including the remotely piloted 720 Controlled Impact Demonstration and sub-scale F-15 research projects. In addition, McMurtry was the 747 co-pilot for the Shuttle Approach and Landing Tests and made the last glide flight in the X-24B. McMurtry was Dryden?s Director for Flight Operations from 1986 to 1998, when he became Associate Director for Operations at NASA Dryden. In 1982, McMurtry received the Iven C. Kincheloe Award from the Society of Experimental Test Pilots for his contributions as project pilot on the AD-1 Oblique Wing program. In 1998 he was named as one of the honorees at the Lancaster, Calif., ninth Aerospace Walk of Honor ceremonies. In 1999 he was awarded the NASA Distinguished Service Medal. He retired in 1999 after a distinguished career as pilot and manager at Dryden that began in 1967. |
Project Description |
The F-8 Supercritical Wing was a flight research project designed to test a new wing concept designed by Dr. Richard Whitcomb, chief of the Transonic Aerodynamics Branch, Langley Research Center, Hampton, Virginia. Compared to a conventional wing, the supercritical wing (SCW) is flatter on the top and rounder on the bottom with a downward curve at the trailing edge. The Supercritical Wing was designed to delay the formation of and reduce the shock wave over the wing just below and above the speed of sound (transonic region of flight). Delaying the shock wave at these speeds results in less drag. Results of the NASA flight research at the Flight Research Center, Edwards, California, (later renamed the Dryden Flight Research Center) demonstrated that aircraft using the supercritical wing concept would have increased cruising speed, improved fuel efficiency, and greater flight range than those using conventional wings. As a result, supercritical wings are now commonplace on virtually every modern subsonic commercial transport. Results of the NASA project showed the SCW had increased the transonic efficiency of the F-8 as much as 15 percent and proved that passenger transports with supercritical wings, versus conventional wings, could save $78 million (in 1974 dollars) per year for a fleet of 280 200-passenger airliners. The F-8 Supercritical Wing (SCW) project flew from 1970 to 1973. Dryden engineer John McTigue was the first SCW program manager and Tom McMurtry was the lead project pilot. The first SCW flight took place on March 9, 1971. The last flight of the Supercritical wing was on May 23, 1973, with Ron Gerdes at the controls. Original wingspan of the F-8 is 35 feet, 2 inches while the wingspan with the supercritical wing was 43 feet, 1 inch. F-8 aircraft were powered by Pratt & Whitney J57 turbojet engines. The TF-8A Crusader was made available to the NASA Flight Research Center by the U.S. Navy. F-8 jet aircraft were built, originally, by LTV Aerospace, Dallas, Texas. Rockwell International?s North American Aircraft Division received a $1.8 million contract to fabricate the supercritical wing, which was delivered to NASA in December 1969. |
Photo Date |
December 20, 1972 |
|
Artist Concept of X-43A/Hype
Title |
Artist Concept of X-43A/Hyper-X Hypersonic Experimental Research Vehicle in Flight |
Description |
An artist's conception of the X-43A Hypersonic Experimental Vehicle, or "Hyper-X" in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, "air-breathing" engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 "Mothership." After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control. |
Date |
01.01.1998 |
|
X-38 Arrival at NASA Dryden
Photo Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). Captive-carry flights attached under the wing of Dryden's B-52 are scheduled to begin in July, with unpiloted free-flights from the B-52 scheduled to begin in the fall. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
June 1997 |
|
X-38 Arrival at NASA Dryden
Photo Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) is transported across the ramp after its arrival at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. Its landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
June 1997 |
|
X-38 Arrival at NASA Dryden
Photo Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
June 1997 |
|
X-38 Arrival at NASA Dryden
Photo Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. Its landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
June 1997 |
|
X-38 on Lakebed after Landin
Photo Description |
NASA's X-38, a prototype of a Crew Return Vehicle (CRV) resting on the lakebed near the Dryden Flight Research Center after the completion of its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
February 6, 1999 |
|
Lifting body pilots - Jerry
Photo Description |
Posing for this photo in front of the M2-F3 are (Left-Right) Air Force pilot Captain Jerauld Gentry, NASA pilots John Manke and William H. Dana. Kneeling is Air Force pilot Major Cecil Powell. These four pilots flew the M2-F3 on a total of 27 flights between June 2, 1970 and December 20, 1972. The vehicle reached a maximum altitude of 71,500 feet and a maximum speed of Mach 1.613. Dana joined the National Aeronautics and Space Administration's High-Speed Flight Station On October 1, 1958 (the birthday of NASA). As a research pilot, he was involved in some of the most significant aeronautical programs carried out at the Center. In the late 1960s and in the 1970s Dana was a project pilot on the lifting body program which flew several versions of the wingless vehicles and produced data that helped in development of the Space Shuttle. For his contributions to the lifting body program, Dana received the NASA Exceptional Service Medal. In 1976 he received the Haley Space Flight Award from the American Institute of Aeronautics and Astronautics for his research work on the M2-F3 lifting body control systems. In 1993 Dana became Chief Engineer at NASA's Dryden Flight Research Center. He has authored several technical papers and is a member of The Society of Experimental Test Pilots. He retired on May 29, 1998. John joined the National Aeronautics and Space Administration's Flight Research Center in 1962 as a research engineer and later became a research pilot, testing advanced craft such as the wingless lifting bodies, forerunners of the Space Shuttle. He was project pilot on the X-24B and also flew the HL-10, M2-F3, and X-24A lifting bodies. John made the first supersonic flight of a lifting body and the first landing of a lifting body on a hard surface runway. Manke served as Director of the Flight Operations and Support Directorate at the Dryden Flight Research Center prior to its integration with Ames Research Center in October 1981. After this date John was named to head the joint Ames-Dryden Directorate of Flight Operations. He also served as site manager of the NASA Ames-Dryden Flight Research Facility. John is a member of the Society of Experimental Test Pilots. He retired on April 27, 1984. |
Project Description |
A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to 1975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC's M2-F1 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ] program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the help and cooperation of the FRC and redesignated the M2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Photo Date |
1971 |
|
X-38 Arrival at NASA Dryden
Photo Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC) and is seen here on the ramp with NASAÕs Boeing 747 Shuttle Carrier Aircraft (SCA) in the background. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
June 1997 |
|
X-38 Arrival at NASA Dryden
Photo Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) is transported down a road at NASA's Dryden Flight Research Center, Edwards, California, upon its arrival there in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
June 1997 |
|
X-38 Arrival at NASA Dryden
Photo Description |
Technicians unload NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) into a hangar upon its arrival at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
June 1997 |
|
X-38: Close-up of Pyrotechni
Photo Description |
In these close-ups, the canister containing the seven-foot-diameter X-38 Flight Termination System (FTS) parachute can be seen launching safely away from an aft-end mockup of the X-38 by a pyrotechnic firing system in December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft-end, minus vertical stabilizers, on a truck prior to installation in the X-38. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
December 1996 |
|
X-38: Artist Concept of Re-E
Photo Description |
This is an artist's depiction of NASA's proposed Crew Return Vehicle (CRV) re-entering the earth's atmosphere. A team of NASA researchers began free flight tests of the X-38, a technology demonstrator for the CRV, at NASA's Dryden Flight Research Center, Edwards, California, in 1998. The CRV is being designed as a "lifeboat" for the International Space Station |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
1997 |
|
X-38 Being Prepared for Ship
Photo Description |
Technicians prepare the X-38 research vehicle for shipment in a Dryden Flight Research Center hangar in May 2000. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
May 2000 |
|
The X-38 lifting body resear
Photo Description |
The X-38 lifting body research vehicle, seen here wrapped in a protective material, is lowered onto a truck for shipping from the Dryden Flight Research Center in May 2000. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
May 2000 |
|
The X-38 Second Prototype Fl
Photo Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle from the International Space Station, is seen just before touchdown on a lakebed near the Dryden Flight Research Center, Edwards California, at the end of a March 2000 test flight. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 2000 |
|
X-38 "Lifeboat" Top Front Vi
Photo Description |
The X-38 is seen here just before being shipped from Scaled Composites, Inc., Mojave, California, to NASA's Johnson Space Center, Houston, Texas, in August 1996. The X-38 was sent to Johnson for installation of avionics, computer systems and other hardware in preparation for flight tests at the Dryden Flight Research Center, Edwards, California. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
August 1996 |
|
X-38 "Lifeboat" Side View -
Photo Description |
The X-38 is seen here just before being shipped from Scaled Composites, Inc., in Mojave, California, to NASA's Johnson Space Center, Houston, Texas, in August 1996. The X-38 was sent to Johnson for installation of avionics, computer systems and other hardware in preparation for flight tests at the Dryden Flight Research Center, Edwards, California. The X-38 was constructed primarily of fiberglass by Scaled Composites of Mojave, California. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
August 1996 |
|
X-38 "Lifeboat" Bottom Front
Photo Description |
The X-38 is seen here just before being shipped from Scaled Composites, Inc., Mojave, California, to NASA's Johnson Space Center, Houston, Texas, in August 1996. The X-38 was sent to Johnson for installation of avionics, computer systems and other hardware in preparation for flight tests at the Dryden Flight Research Center, Edwards, California. It is seen here hoisted by a crane at Scaled CompositesÕ Mojave facility. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
August 1996 |
|
X-38 "Lifeboat" Side View -
Photo Description |
This side view of the X-38 shows the vehicle just before it was shipped from Scaled Composites, Inc., Mojave, California, to NASA's Johnson Space Center, Houston, Texas, in August 1996. The X-38 was sent to Johnson for installation of avionics, computer systems and other hardware in preparation for flight tests at the Dryden Flight Research Center, Edwards, California. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
August 1996 |
|
X-38: Plywood Mockup of Aft
Photo Description |
This photo shows a plywood mockup of the X-38's aft end, minus vertical stabilizers, mounted on a truck for an economical test of the X-38's Flight Termination System (FTS) on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The FTS seven-foot diameter parachute was launched safely away from the mockup by a pyrotechnic firing system. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
December 1996 |
|
X-38: Parachute Canister Fir
Photo Description |
The canister containing a seven-foot-diameter X-38 Flight Termination System (FTS) parachute is launched safely away from a plywood mockup of the X-38 by a pyrotechnic firing system on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft end, minus vertical stabilizers, on a truck prior to installation in the X-38. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
December 1996 |
|
X-38: Parachute Canister Fir
Photo Description |
The canister containing a seven-foot-diameter X-38 Flight Termination System (FTS) parachute is launched safely away from a plywood mockup of the X-38 by a pyrotechnic firing system on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft end, minus vertical stabilizers, on a truck prior to installation in the X-38. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
December 1996 |
|
X-38 Suspended in Hangar
Photo Description |
The X-38 lifting body research vehicle is shown here suspended in a hangar at NASAÕs Dryden Flight Research Center in 1998. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
1998 |
|
X-38 - First Free Flight, Ma
Photo Description |
The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 12, 1998 |
|
X-38 - On Ground after First
Photo Description |
Crew members surround the X-38 lifting body research vehicle after a successful test flight and landing in March 1998. The flight was the first free flight for the vehicle and took place at the Dryden Flight Research Center, Edwards, California. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 12, 1998 |
|
X-38 - Landing After First F
Photo Description |
The X-38 Crew Return Vehicle touches down amidst the California desert scrubbrush at the end of its first free flight at the Dryden Flight Research Center, Edwards, California, in March 1998. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 12, 1998 |
|
X-38 - First Free Flight, Ma
Photo Description |
The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 12, 1998 |
|
X-38 - First Free Flight, Ma
Photo Description |
The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 12, 1998 |
|
X-38 Vehicle #132 in Flight
Photo Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), maneuvers toward landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 5, 1999 |
|
X-38 Vehicle #132 in Flight
Photo Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parafoil on a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 5, 1999 |
|
X-38 in Flight during Second
Photo Description |
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
February 6, 1999 |
|
X-38 in Flight during Second
Photo Description |
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward a desert lakebed under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
February 6, 1999 |
|
X-38 Vehicle #132 in Flight
Photo Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parafoil on a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 5, 1999 |
|
X-38 in Flight during Second
Photo Description |
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
February 6, 1999 |
|
X-38 Ship #2 Landing on Lake
Photo Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), makes a gentle lakebed landing at the end of a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
July 1999 |
|
The X-38 Second Prototype Gl
Photo Description |
The X-38 technology demonstrator descends under its steerable parafoil toward a lakebed landing in a March 2000 test flight. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
March 2000 |
|
X-38 Being Prepared for Ship
Photo Description |
Technicians prepare the X-38 lifting body research vehicle, seen here wrapped in a protective material, for shipping in May 2000. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
May 2000 |
|
X-38 Being Prepared for Ship
Photo Description |
Technicians prepare the X-38 lifting body research vehicle, seen here wrapped in a protective material, for shipping in May 2000. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
May 2000 |
|
X-38 Drop Model: Glides to E
Photo Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
1995 |
|
X-38 Drop Model: Used to Tes
Photo Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
1995 |
|
The First X-38 Technology De
Photo Description |
The first X-38 technology demonstrator (V-131) is seen here undergoing modifications to the rear to conform more to the shape of the future Crew Return Vehicle (CRV) |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
November 1999 |
|
Two X-38 Ship Demonstrators
Photo Description |
This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASAÕs Johnson Space Flight Center, Houston, Texas. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
November 1999 |
|
A Full-Size Mockup of the Ca
Photo Description |
This photo, taken at NASAÕs Johnson Space Center, Houston, Texas, shows a full-size mockup of the cabin for the Crew Return Vehicle (CRV) for the International Space Station |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
November 1999 |
|
The Interior of the Crew Ret
Photo Description |
This photo of the interior of a full-size mock-up of the Crew Return Vehicle (CRV) cabin at NASAÕs Johnson Space Center, Houston, Texas, shows how up to seven astronauts could be carried aboard the spacecraft. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
November 1999 |
|
F-8 SCW on ramp with test pi
Title |
F-8 SCW on ramp with test pilot Tom McMurtry |
Description |
A Vought F-8A Crusader was selected by NASA as the testbed aircraft (designated TF-8A) to install an experimental Supercritical Wing (SCW) in place of the conventional wing. The unique design of the Supercritical Wing reduces the effect of shock waves on the upper surface near Mach 1, which in turn reduces drag. In this photograph the TF-8A Crusader with Supercritical Wing is shown on the ramp with project pilot Tom McMurtry standing beside it. McMurtry received NASA's Exceptional Service Medal for his work on the F-8 SCW aircraft. He also flew the AD-1, F-15 Digital Electronic Engine Control, the KC-130 winglets, the F-8 Digital Fly-By-Wire and other flight research aircraft including the remotely piloted 720 Controlled Impact Demonstration and sub-scale F-15 research projects. In addition, McMurtry was the 747 co-pilot for the Shuttle Approach and Landing Tests and made the last glide flight in the X-24B. McMurtry was Dryden's Director for Flight Operations from 1986 to 1998, when he became Associate Director for Operations at NASA Dryden. In 1982, McMurtry received the Iven C. Kincheloe Award from the Society of Experimental Test Pilots for his contributions as project pilot on the AD-1 Oblique Wing program. In 1998 he was named as one of the honorees at the Lancaster, Calif., ninth Aerospace Walk of Honor ceremonies. In 1999 he was awarded the NASA Distinguished Service Medal. He retired in 1999 after a distinguished career as pilot and manager at Dryden that began in 1967. The F-8 Supercritical Wing was a flight research project designed to test a new wing concept designed by Dr. Richard Whitcomb, chief of the Transonic Aerodynamics Branch, Langley Research Center, Hampton, Virginia. Compared to a conventional wing, the supercritical wing (SCW) is flatter on the top and rounder on the bottom with a downward curve at the trailing edge. The Supercritical Wing was designed to delay the formation of and reduce the shock wave over the wing just below and above the speed of sound (transonic region of flight). Delaying the shock wave at these speeds results in less drag. Results of the NASA flight research at the Flight Research Center, Edwards, California, (later renamed the Dryden Flight Research Center) demonstrated that aircraft using the supercritical wing concept would have increased cruising speed, improved fuel efficiency, and greater flight range than those using conventional wings. As a result, supercritical wings are now commonplace on virtually every modern subsonic commercial transport. Results of the NASA project showed the SCW had increased the transonic efficiency of the F-8 as much as 15 percent and proved that passenger transports with supercritical wings, versus conventional wings, could save $78 million (in 1974 dollars) per year for a fleet of 280 200-passenger airliners. The F-8 Supercritical Wing (SCW) project flew from 1970 to 1973. Dryden engineer John McTigue was the first SCW program manager and Tom McMurtry was the lead, project pilot. The first SCW flight took place on March 9, 1971. The last flight of the Supercritical wing was on May 23, 1973, with Ron Gerdes at the controls. Original wingspan of the F-8 is 35 feet, 2 inches while the wingspan with the supercritical wing was 43 feet, 1 inch. F-8 aircraft were powered by Pratt & Whitney J57 turbojet engines. The TF-8A Crusader was made available to the NASA Flight Research Center by the U.S. Navy. F-8 jet aircraft were built, originally, by LTV Aerospace, Dallas, Texas. Rockwell International's North American Aircraft Division received a $1.8 million contract to fabricate the supercritical wing, which was delivered to NASA in December 1969. |
Date |
01.01.1972 |
|
Pegasus Rocket Model
Title |
Pegasus Rocket Model |
Description |
A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1996 |
|
Pegasus Mated under Wing of
Title |
Pegasus Mated under Wing of B-52 Mothership - Close-up |
Description |
A close-up view of the Pegasus space-booster attached to the wing pylon of NASA's B-52 launch aircraft at NASA's Dryden Flight Research Center, Edwards, California. The Pegasus rocket booster was designed as a way to get small payloads into space orbit more easily and cost-effectively. It has also been used to gather data on hypersonic flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There, is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1994 |
|
PHYSX Glove Test
Title |
PHYSX Glove Test |
Description |
A mock-up of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental "glove" undergoes hot-loads tests at NASA's Dryden Flight Research Center, Edwards, California. The thermal ground test simulates heats and pressures the wing glove will experience at hypersonic speeds. Quartz heat lamps subject this model of a Pegasus booster rocket's right wing glove to the extreme heats it will experience at speeds approaching Mach 8. The glove has a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experimental flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft, launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1995 |
|
Lifting body pilots - Jerry
Title |
Lifting body pilots - Jerry Gentry, John Manke, Bill Dana, Cecil Powell with M2-F3 in background |
Description |
Posing for this photo in front of the M2-F3 are (Left-Right) Air Force pilot Captain Jerauld Gentry, NASA pilots John Manke and William H. Dana. Kneeling is Air Force pilot Major Cecil Powell. These four pilots flew the M2-F3 on a total of 27 flights between June 2, 1970 and December 20, 1972. The vehicle reached a maximum altitude of 71,500 feet and a maximum speed of Mach 1.613. Dana joined the National Aeronautics and Space Administration's High-Speed Flight Station On October 1, 1958 (the birthday of NASA). As a research pilot, he was involved in some of the most significant aeronautical programs carried out at the Center. In the late 1960s and in the 1970s Dana was a project pilot on the lifting body program which flew several versions of the wingless vehicles and produced data that helped in development of the Space Shuttle. For his contributions to the lifting body program, Dana received the NASA Exceptional Service Medal. In 1976 he received the Haley Space Flight Award from the American Institute of Aeronautics and Astronautics for his research work on the M2-F3 lifting body control systems. In 1993 Dana became Chief Engineer at NASA's Dryden Flight Research Center. He has authored several technical papers and is a member of The Society of Experimental Test Pilots. He retired on May 29, 1998. John joined the National Aeronautics and Space Administration's Flight Research Center in 1962 as a research engineer and later became a research pilot, testing advanced craft such as the wingless lifting bodies, forerunners of the Space Shuttle. He was project pilot on the X-24B and also flew the HL-10, M2-F3, and X-24A lifting bodies. John made the first supersonic flight of a lifting body and the first landing of a lifting body on a hard surface runway. Manke served as Director of the Flight Operations and Support Directorate at the Dryden Flight Research Center prior to its integration with Ames Research Center in October 1981. After this date John was named to head the joint Ames-Dryden Directorate of Flight Operations. He also served as site manager of the NASA Ames-Dryden Flight Research Facility. John is a member of the Society of Experimental Test Pilots. He retired on April 27, 1984. A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC'sM2-F1 [, http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ]program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the help and cooperation of the FRC and redesignated theM2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Date |
01.01.1971 |
|
X-38 Arrival at NASA Dryden
Title |
X-38 Arrival at NASA Dryden on June 4, 1997 |
Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). Captive-carry flights attached under the wing of Dryden's B-52 are scheduled to begin in July, with unpiloted free-flights from the B-52 scheduled to begin in the fall. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000, pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
06.01.1997 |
|
Close-up of Pegasus Rocket W
Title |
Close-up of Pegasus Rocket Wing and PHYSX Glove Experiment |
Description |
This close-up view of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental "glove" shows a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experiment's flight. The glove and the Pegasus rocket wing it is attached to were load-tested at Scaled Composites, Inc., in Mojave, California, in January 1997. The Pegasus wing with attached PHYSX glove was placed in a wooden triangular test-rig, mounted to the floor atop the waterbags. Technicians slowly filled water bags beneath the wing, applying the pressure, or "wing-loading," required to determine whether the wing could withstand its design limit for stress. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus, airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1997 |
|
Pegasus Engine Ignites after
Title |
Pegasus Engine Ignites after Drop from B-52 Mothership |
Description |
Against the midnight blue of a high-altitude sky, Orbital Sciences' Pegasus winged rocket booster ignites after being dropped from NASA's B-52 mothership on a July 1991 flight. A NASA chase plane for the flight is also visible above the rocket and below the B-52. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never, launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
07.17.1991 |
|
Pegasus Rocket Wing and PHYS
Title |
Pegasus Rocket Wing and PHYSX Glove Being Prepared for Stress Loads Testing |
Description |
A technician adjusts the Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove before a loads-test at Scaled Composites, Inc., in Mojave, California, in January 1997. For the test, technicians slowly filled water bags beneath the wing to create the pressure, or "wing-loading," required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. PHYSX was launched aboard a Pegasus rocket on October 22, 1998. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound, payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1997 |
|
Pegasus Rocket Wing and PHYS
Title |
Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing |
Description |
The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or "wing-loading," required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is, capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1997 |
|
X-38 Arrival at NASA Dryden
Title |
X-38 Arrival at NASA Dryden on June 4, 1997 |
Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) is transported down a road at NASA's Dryden Flight Research Center, Edwards, California, upon its arrival there in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power., The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
06.01.1997 |
|
X-38 Arrival at NASA Dryden
Title |
X-38 Arrival at NASA Dryden on June 4, 1997 |
Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was, expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
06.01.1997 |
|
X-38 Arrival at NASA Dryden
Title |
X-38 Arrival at NASA Dryden on June 4, 1997 |
Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was, expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
06.01.1997 |
|
X-38 Arrival at NASA Dryden
Title |
X-38 Arrival at NASA Dryden on June 4, 1997 |
Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC) and is seen here on the ramp with NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) in the background. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude, control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
06.01.1997 |
|
X-38 Arrival at NASA Dryden
Title |
X-38 Arrival at NASA Dryden on June 4, 1997 |
Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) is transported across the ramp after its arrival at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power., The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
06.01.1997 |
|
X-38 Arrival at NASA Dryden
Title |
X-38 Arrival at NASA Dryden on June 4, 1997 |
Description |
NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) arrives at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was, expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
06.01.1997 |
|
X-38 Arrival at NASA Dryden
Title |
X-38 Arrival at NASA Dryden on June 4, 1997 |
Description |
Technicians unload NASA's first X-38 Advanced Technology Demonstrator for the proposed Crew Return Vehicle (CRV) into a hangar upon its arrival at NASA's Dryden Flight Research Center, Edwards, California, in June 1997. The vehicle arrived aboard a USAF C-17 transport aircraft from NASA's Johnson Space Center (JSC). The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power., The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
06.01.1997 |
|
X-38 on Lakebed after Landin
Title |
X-38 on Lakebed after Landing on Second Free Flight |
Description |
NASA's X-38, a prototype of a Crew Return Vehicle (CRV) resting on the lakebed near the Dryden Flight Research Center after the completion of its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to, be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
02.06.1999 |
|
Photo Description |
Former NACA test pilots Scott Crossfield, Stan Butchart, Robert Champine, and John Griffith gathered at the NASA Dryden Flight Research Center for the "Men of Mach 2" symposium, an event celebrating their work in the 1950's on the D-558-II Skyrocket aircraft. |
Photo Date |
February 4, 1998 |
|
Photo Description |
Robert Dale Reed, aerospace engineer, NASA Dryden Flight Research Center |
Photo Date |
June 11, 1998 |
|
The X-38 lifting body resear
Title |
The X-38 lifting body research vehicle, seen here wrapped in a protective material, lowered onto a t |
Description |
Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., The X-38 lifting body research vehicle, seen here wrapped in a protective material, is lowered onto a truck for shipping from the Dryden Flight Research Center in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, |
Date |
05.01.2000 |
|
The X-38 Second Prototype Fl
Title |
The X-38 Second Prototype Flares to a Landing over the Lakebed at the End of Its Fifth Flight at Edw |
Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle from the International Space Station, is seen just before touchdown on a lakebed near the Dryden Flight Research Center, Edwards California, at the end of a March 2000 test flight. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was, expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.01.2000 |
|
X-38 - First Free Flight, Ma
Title |
X-38 - First Free Flight, March 12, 1998 |
Description |
The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort, between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.12.1998 |
|
X-38 - First Free Flight, Ma
Title |
X-38 - First Free Flight, March 12, 1998 |
Description |
The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort, between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.12.1998 |
|
X-38 - First Free Flight, Ma
Title |
X-38 - First Free Flight, March 12, 1998 |
Description |
Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert during its first free flight in March 1998 at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson |
Date |
03.12.1998 |
|
X-38 - First Free Flight, Ma
Title |
X-38 - First Free Flight, March 12, 1998 |
Description |
The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort, between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.12.1998 |
|
X-38 - First Free Flight, Ma
Title |
X-38 - First Free Flight, March 12, 1998 |
Description |
The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort, between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.12.1998 |
|
X-38 - Landing After First F
Title |
X-38 - Landing After First Free Flight, March 12, 1998 |
Description |
Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., The X-38 Crew Return Vehicle touches down amidst the California desert scrubbrush at the end of its first free flight at the Dryden Flight Research Center, Edwards, California, in March 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson |
Date |
03.12.1998 |
|
X-38 - On Ground after First
Title |
X-38 - On Ground after First Free Flight, March 12, 1998 |
Description |
Crew members surround the X-38 lifting body research vehicle after a successful test flight and landing in March 1998. The flight was the first free flight for the vehicle and took place at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The, X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.12.1998 |
|
X-38 - Rear View in Hangar
Title |
X-38 - Rear View in Hangar |
Description |
This photo shows a rear view of the X-38 Crew Return Vehicle in a hangar at the Dryden Flight Research Center shortly after its first successful free flight at the Center. The X-38 was dropped from a B-52 mothership and then glided to a landing under a large, steerable parafoil. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was, expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.01.1998 |
|
X-38 Being Prepared for Ship
Title |
X-38 Being Prepared for Shipment |
Description |
(LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., Technicians prepare the X-38 research vehicle for shipment in a Dryden Flight Research Center hangar in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia |
Date |
05.01.2000 |
|
X-38 in Flight during Second
Title |
X-38 in Flight during Second Free Flight |
Description |
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude, control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
02.06.1999 |
|
X-38 in Flight during Second
Title |
X-38 in Flight during Second Free Flight |
Description |
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude, control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
02.06.1999 |
|
X-38 in Flight during Second
Title |
X-38 in Flight during Second Free Flight |
Description |
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude, control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
02.01.1999 |
|
X-38 in Flight during Second
Title |
X-38 in Flight during Second Free Flight |
Description |
NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward a desert lakebed under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude, control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
02.06.1999 |
|
X-38 Prototype Technology De
Title |
X-38 Prototype Technology Demonstrator for the Crew Return Vehicle (CRV) and Project Managers Bob Ba |
Description |
Bob Baron of the Dryden Flight Research Center (left) and Brian Anderson of the Johnson Space Flight Center (right) flank an X-38 prototype Crew Return Vehicle technology demonstrator under construction at the Johnson Space Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long., The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
11.01.1999 |
|
X-38 Ship #2 Landing on Lake
Title |
X-38 Ship #2 Landing on Lakebed, Completing the Program's 4th Flight |
Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), makes a gentle lakebed landing at the end of a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow, the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
07.01.1999 |
|
X-38 Suspended in Hangar
Title |
X-38 Suspended in Hangar |
Description |
The X-38 lifting body research vehicle is shown here suspended in a hangar at NASA's Dryden Flight Research Center in 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton,, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
01.01.1998 |
|
X-38 Vehicle #132 in Flight
Title |
X-38 Vehicle #132 in Flight Approaching Landing during First Free Flight |
Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), maneuvers toward landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a, joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.05.1999 |
|
X-38 Vehicle #132 in Flight
Title |
X-38 Vehicle #132 in Flight with Deployed Parafoil during First Free Flight |
Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parafoil on a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is, a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.05.1999 |
|
X-38 Vehicle #132 in Flight
Title |
X-38 Vehicle #132 in Flight with Deployed Parafoil during First Free Flight |
Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parafoil on a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is, a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.05.1999 |
|
X-38 Vehicle #132 in Flight
Title |
X-38 Vehicle #132 in Flight with Deployed Parafoil during First Free Flight |
Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parafoil on a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is, a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.05.1999 |
|
X-38 Vehicle #132 Landing on
Title |
X-38 Vehicle #132 Landing on First Free Flight |
Description |
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), flares for its lakebed landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38, project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.05.1999 |
|
X-38: Artist Concept of Re-E
Title |
X-38: Artist Concept of Re-Entering Earth's Atmosphere |
Description |
This is an artist's depiction of NASA's proposed Crew Return Vehicle (CRV) re-entering the earth's atmosphere. A team of NASA researchers began free flight tests of the X-38, a technology demonstrator for the CRV, at NASA's Dryden Flight Research Center, Edwards, California, in 1998. The CRV is being designed as a "lifeboat" for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system, and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
01.01.1997 |
|
X-38: Close-up of Pyrotechni
Title |
X-38: Close-up of Pyrotechnic Firing during Test of Flight Termination System Parachute Deployment |
Description |
16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., In these close-ups, the canister containing the seven-foot-diameter X-38 Flight Termination System (FTS) parachute can be seen launching safely away from an aft-end mockup of the X-38 by a pyrotechnic firing system in December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft-end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately |
Date |
12.01.1996 |
|
X-38: Parachute Canister Fir
Title |
X-38: Parachute Canister Fired from Plywood Mockup during Flight Termination System Test |
Description |
The canister containing a seven-foot-diameter X-38 Flight Termination System (FTS) parachute is launched safely away from a plywood mockup of the X-38 by a pyrotechnic firing system on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The, vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
12.01.1996 |
|
X-38: Parachute Canister Fir
Title |
X-38: Parachute Canister Fired from Plywood Mockup during Flight Termination System Test |
Description |
The canister containing a seven-foot-diameter X-38 Flight Termination System (FTS) parachute is launched safely away from a plywood mockup of the X-38 by a pyrotechnic firing system on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The, vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
12.01.1996 |
|
X-38: Parachute Canister Fir
Title |
X-38: Parachute Canister Fired from Plywood Mockup during Flight Termination System Test |
Description |
The canister containing a seven-foot-diameter X-38 Flight Termination System (FTS) parachute is launched safely away from a plywood mockup of the X-38 by a pyrotechnic firing system on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The, vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
12.01.1996 |
|
X-38: Plywood Mockup of Aft
Title |
X-38: Plywood Mockup of Aft End Used for Flight Termination System Parachute Test |
Description |
This photo shows a plywood mockup of the X-38's aft end, minus vertical stabilizers, mounted on a truck for an economical test of the X-38's Flight Termination System (FTS) on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The FTS seven-foot diameter parachute was launched safely away from the mockup by a pyrotechnic firing system. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control, system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
12.01.1996 |
|
Photo Description |
Apex wing section undergoing loading test preparation |
Photo Date |
Sept 1998 |
|
DC-8 Airborne Laboratory in
Photo Description |
Vance D. Brand |
Project Description |
Former astronaut Vance D. Brand flew on the Apollo-Soyuz Test Project in 1975 and three space shuttle missions in the 1980s. In 2005 he was deputy associate director for programs at NASA Dryden Flight Research Center. |
Photo Date |
August 20, 1998 |
|
A Full-Size Mockup of the Ca
Title |
A Full-Size Mockup of the Cabin for the Crew Return Vehicle (CRV) for the International Space Statio |
Description |
Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., This photo, taken at NASA's Johnson Space Center, Houston, Texas, shows a full-size mockup of the cabin for the Crew Return Vehicle (CRV) for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, |
Date |
11.01.1999 |
|
Dale Reed with X-38 and a Su
Title |
Dale Reed with X-38 and a Subscale Model Used in Test Program |
Description |
Dale Reed, a NASA engineer who worked on the original lifting-body research programs in the 1960s and 1970s, stands with a scale-model X-38 that was used in 1995 research flights, with a full-scale X-38 (80 percent of the size of a potential Crew Return Vehicle) behind him. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was, expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
07.16.1997 |
|
The First X-38 Technology De
Title |
The First X-38 Technology Demonstrator (V-131) Shown with Modifications to the Rear to Conform More |
Description |
(JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., The first X-38 technology demonstrator (V-131) is seen here undergoing modifications to the rear to conform more to the shape of the future Crew Return Vehicle (CRV) The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas |
Date |
11.01.1999 |
|
The Interior of the Crew Ret
Title |
The Interior of the Crew Return Vehicle (CRV) Shows How Up to Seven Astronauts Can Be Carried |
Description |
This photo of the interior of a full-size mock-up of the Crew Return Vehicle (CRV) cabin at NASA's Johnson Space Center, Houston, Texas, shows how up to seven astronauts could be carried aboard the spacecraft. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort, between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
11.01.1999 |
|
The Three Main Rings of the
Title |
The Three Main Rings of the X-38 Vehicle 201 Shown under Construction at NASA Johnson Space Flight C |
Description |
Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., This photo shows the X-38 Vehicle 201, intended for spaceflight testing, under construction at NASA Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley |
Date |
11.01.1999 |
|
The X-38 Second Prototype Gl
Title |
The X-38 Second Prototype Glides to a Landing over the Lakebed at the End of Its Fifth Flight at Edw |
Description |
The X-38 technology demonstrator descends under its steerable parafoil toward a lakebed landing in a March 2000 test flight. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton,, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.01.2000 |
|
The X-38 Second Prototype Gl
Title |
The X-38 Second Prototype Glides to a Landing over the Lakebed at the End of Its Fifth Flight at Edw |
Description |
The X-38 technology demonstrator descends under its steerable parafoil toward a lakebed landing in a March 2000 test flight. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton,, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
03.01.2000 |
|
Two X-38 Ship Demonstrators
Title |
Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center |
Description |
Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley |
Date |
11.01.1999 |
|
X-38 Being Prepared for Ship
Title |
X-38 Being Prepared for Shipment |
Description |
Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., Technicians prepare the X-38 lifting body research vehicle, seen here wrapped in a protective material, for shipping in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, |
Date |
05.01.2000 |
|
X-38 Being Prepared for Ship
Title |
X-38 Being Prepared for Shipment |
Description |
Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground., Technicians prepare the X-38 lifting body research vehicle, seen here wrapped in a protective material, for shipping in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, |
Date |
05.01.2000 |
|
X-38 Drop Model: Glides to E
Title |
X-38 Drop Model: Glides to Earth After Being Dropped from a Cessna |
Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for, internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
01.01.1995 |
|
X-38 Drop Model: Testing Par
Title |
X-38 Drop Model: Testing Parafoil Landing System during Drop Tests |
Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for, internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
01.01.1995 |
|
X-38 Drop Model: Used to Tes
Title |
X-38 Drop Model: Used to Test Parafoil Landing System during Drop Tests |
Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for, internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
01.01.1995 |
|
Pilot Ed Lewis with T-34C ai
DC-8 Airborne Laboratory in
Photo Date |
February 25, 1998 |
|
Research Pilot C. Gordon Ful
Title |
Research Pilot C. Gordon Fullerton in Cockpit of TU-144LL SST Flying Laboratory |
Description |
NASA Research pilot C. Gordon Fullerton sits in cockpit of TU-144LL SST Flying Laboratory. Fullerton was one of two NASA pilots who flew the aircraft as part of a joint high speed research program. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose, boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
09.01.1998 |
|
Russian Tu-144LL SST Flying
Title |
Russian Tu-144LL SST Flying Laboratory Landing at Zhukovsky Air Development Center |
Description |
The Tupolev Tu-144LL supersonic flying laboratory lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles, with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
07.01.1997 |
|
Russian Tu-144LL SST Flying
Title |
Russian Tu-144LL SST Flying Laboratory Landing at Zhukovsky Air Development Center |
Description |
The Tupolev Tu-144LL supersonic flying laboratory touches down at the Zhukovsky Air Development Center near Moscow, Russia, following a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip, angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
07.01.1997 |
|
Russian Tu-144LL SST Flying
Title |
Russian Tu-144LL SST Flying Laboratory Landing with Drag Chutes at Zhukovsky Air Development Center |
Description |
The modified Tupolev Tu-144 supersonic flying laboratory touches down and deploys a trio of drag chutes following a test flight at the Zhukovsky Air Development Center near Moscow, Russia, in July 1997. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure, nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
07.01.1997 |
|
Russian Tu-144LL SST Flying
Title |
Russian Tu-144LL SST Flying Laboratory Takeoff at Zhukovsky Air Development Center |
Description |
With its nose drooped and canards extended, the Tupolev Tu-144LL supersonic flying laboratory lifts off from the Zhukovsky Air Development Center near Moscow, Russia on a 1997 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom, pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
07.01.1997 |
|
Russian Tu-144LL SST Joint N
Title |
Russian Tu-144LL SST Joint NASA Flying Laboratory - Flight November 29, 1996 |
Description |
The modified Tupolev Tu-144LL supersonic flying laboratory during a test flight from the Zhukovsky Airfield near Moscow, Russia. The "LL" stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to, measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
11.01.1996 |
|
Russian Tu-144LL SST Roll-ou
Title |
Russian Tu-144LL SST Roll-out for Joint NASA Research Program |
Description |
U.S. Ambassador Pickering addresses Russian and American dignitaries, industry representatives and members of the press during a roll-out ceremony for the modified Tu-144LL supersonic flying laboratory. The ceremony was held at the Zhukovsky Air Development Center near Moscow, Russia, on March 17, 1996. The "LL" designation for the aircraft stands for Letayuschaya Laboratoriya, which means Flying Laboratory in Russian. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed, to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
03.01.1996 |
|
Tu-144LL SST Flying Laborato
Title |
Tu-144LL SST Flying Laboratory Being Towed Down Taxiway |
Description |
With its giant delta wings drooping toward the ground, the Tupolev Tu-144LL is towed down a taxiway at the Zhukovsky Air Development Center near Moscow, Russia, in preparation for a high-speed research flight in 1998. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were, installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
09.01.1998 |
|
Tu-144LL SST Flying Laborato
Title |
Tu-144LL SST Flying Laboratory Front View with Nose Dropped for Takeoff and Landing |
Description |
A front view of the Tupolev Tu-144LL supersonic flying laboratory at the Zhukovsky Air Development Center near Moscow, Russia. The plane's nose droops down for take off and landing and is then raised for high-speed flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were, installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
09.01.1998 |
|
Tu-144LL SST Flying Laborato
Title |
Tu-144LL SST Flying Laboratory in Flight |
Description |
The Tupolev Tu-144LL supersonic flying laboratory shows off its sleek lines in a low-level pass over the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 research flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom, pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
09.01.1998 |
|
Tu-144LL SST Flying Laborato
Title |
Tu-144LL SST Flying Laboratory in Flight |
Description |
The delta wing of the Tupolev Tu-144LL supersonic flying laboratory is evident in this view from underneath the aircraft during a 1998 test flight at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to, measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
09.01.1998 |
|
Tu-144LL SST Flying Laborato
Title |
Tu-144LL SST Flying Laboratory Landing on Runway at Zhukovsky Air Development Center near Moscow, Ru |
Description |
The Tupolev Tu-144LL SST Flying Laboratory rolls down the runway at the Zhukovsky Air Development Center near Moscow, Russia, after a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip, angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
09.01.1998 |
|
Tu-144LL SST Flying Laborato
Title |
Tu-144LL SST Flying Laboratory Lifts off Runway on a High-Speed Research Flight |
Description |
NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage., The Tupolev Tu-144LL lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two |
Date |
09.01.1998 |
|
Tu-144LL SST Flying Laborato
Title |
Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia |
Description |
The sleek lines of the Tupolev Tu-144LL are evident as it sits on the taxiway at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with, increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
09.01.1998 |
|
Tu-144LL SST Flying Laborato
Title |
Tu-144LL SST Flying Laboratory Side View of Nose, with a TU-144D on Ramp |
Description |
A Tupolev Tu-144D supersonic jetliner is framed by the drooped nose and forward fuselage of the Tu-144LL supersonic flying laboratory at the Zhukovsky Air Development Center near Moscow, Russia, in 1998. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a "D" model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure, nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage. |
Date |
09.01.1998 |
|
JetStar in flight
Photo Description |
The C-140 JetStar was reconfigured as the General Purpose Airborne Simulator (GPAS) to simulate the flight characteristics of other aircraft. The JetStar was used for research for supersonic transports, general aviation aircraft, and as a training support aircraft for the Space Shuttle Approach and Landing tests at Dryden Flight Research Center (under different names) at Edwards, CA, in 1977. One of the engineers on the GPAS program was Ken Szalai, who later became Dryden's director from 1990 to August 1998. |
Project Description |
This C-140 JetStar was flown by NASA's Dryden Flight Research Center, Edwards, California, from 1964 to 1989 in a variety of projects applicable to civilian aircraft. Built by Lockheed, the aircraft-NASA 814-was used in a laminar flow study to help develop methods of designing more efficient aircraft wings. The JetStar was later used as a testbed to investigate acoustic characteristics of a series of subscale advanced design propellors which featured blades that curved rearward. The aircraft was also used as a support vehicle during the Space Shuttle Approach and Landing Tests at Dryden in 1977, and for a variety of general purpose airborne simulation studies related to general aviation aircraft. |
Photo Date |
August 9, 1970 |
|
F-18 Systems Research Aircra
Apex wing section undergoing
Photo Description |
Mark Nunnelee and Eliseo Sanchez prepare an Apex wing section for load tests. |
Photo Date |
September 1998 |
|
Photo Description |
Former NACA test pilot Scott Crossfield at the 1998 "Men of Mach 2" symposium, an event celebrating his work in the 1950's on the D-558-II Skyrocket aircraft. |
Photo Date |
February 4, 1998 |
|
Photo Description |
The Kelly Space & Technology (KST)/USAF/NASA Eclipse project?s modified QF-106 under tow by a USAF C-141A. NASA?s Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. |
Project Description |
In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator?01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios. |
Photo Date |
January 28, 1998 |
|
Centurion in Flight
Photo Description |
The Centurion remotely piloted flying wing during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. |
Project Description |
Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Photo Date |
November 1998 |
|
Centurion in Flight
Photo Description |
The long, narrow wing design and lightweight structure of the Centurion remotely piloted flying wing is clearly visible in this photo, taken during an initial series of low-altitude, battery-powered flight tests with the aircraft at NASA?s Dryden Flight Research Center in late 1998. |
Project Description |
Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Photo Date |
November 1998 |
|
DC-8 Airborne Laboratory in
Photo Description |
NASA's DC-8 Airborne Laboratory during a flight over the snow-covered Sierra Nevada Mountains. Over the past several years the DC-8 has conducted research missions in such diverse places as the Pacific in spring and Sweden in winter. |
Project Description |
NASA used a DC-8 aircraft as a flying science laboratory. The platform aircraft, was based at NASA's Dryden Flight Research Center, Edwards, Calif., collected data for many experiments in support of scientific projects serving the world scientific community. Included in this community were NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing has been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology. |
Photo Date |
February 25, 1998 |
|
Operations Manager Tim Mille
Photo Description |
Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. |
Project Description |
NASA used a DC-8 aircraft as a flying science laboratory. The platform aircraft, was based at NASA's Dryden Flight Research Center, Edwards, Calif., collected data for many experiments in support of scientific projects serving the world scientific community. Included in this community were NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing has been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology. |
Photo Date |
26 Mar 1998 |
|
Research pilot and former as
Kenneth J. Szalai
Photo Date |
January 8, 1997 |
|
F-15B with attached X-33 The
Title |
F-15B with attached X-33 Thermal Protection System |
Full Description |
The F-15B in flight with the X-33 Thermal protection System (TPS) fixture mounted under its fuselage. |
Date |
05/14/1998 |
NASA Center |
Dryden Flight Research Center |
|
Closeup of F-15B Flight Test
F-15 ACTIVE touches down on
Photo Description |
The F-15 ACTIVE touches down on the Edwards runway following its April 14, 1998 flight. The nose is high while the canards have their rear edge raised. the aircraft's speed brake, located on the top of the aircraft behind the canopy, is also raised. |
Project Description |
ACTIVE employs thrust-vectoring of engine exhaust and an advanced control system to develop technology to improve cruise and maneuvering capabilities of future aircraft at both subsonic and supersonic speeds. The ACTIVE F-15B (Serial # 71-0290) incorporates engine exhaust nozzles developed by Pratt and Whitney which can vector up to 20 degrees in both pitch and yaw, along with close-coupled canards ahead of the wings, to improve performance and maneuvering ability. |
Photo Date |
14 Apr 1998 |
|
Richard G. Ewers
Photo Date |
December 2, 1998 |
|
Photo Description |
NASA Dryden life support technician Jim Sokolik assists pressure-suited pilot Dee Porter into the cockpit of NASA's ER-2 Earth resources aircraft. |
Project Description |
ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2. |
Photo Date |
July 13, 2006 |
|
X-31 Engine Fit Check
Photo Description |
X-31 team members perform an engine fit check on the X-31 Enhanced Fighter Maneuverability demonstrator aircraft in a hangar at the Dryden Flight Research Center, Edwards, California. |
Project Description |
The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force?s Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the "Herbst Maneuver" after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a "J Turn" when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner. |
Photo Date |
March 3, 1998 |
|
F-8 DFBW with test pilot Gar
Pathfinder on lakebed after
Photo Description |
Crew members service the Pathfinder solar-powered aircraft on Rogers Dry Lake after a research flight at NASA's Dryden Flight Research Center, Edwards, California. |
Project Description |
Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the "Pathfinder" or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft?s six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.) |
Photo Date |
1995 |
|
Frank Batteas
Photo Date |
January 4, 1999 |
|
Research pilot Mark Pestana
Photo Date |
April 16, 2001 |
|
Pathfinder aircraft taking o
Photo Description |
The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. |
Project Description |
Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the "Pathfinder" or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft?s six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.) |
Photo Date |
11 Sept. 1995 |
|
Pathfinder - flight preparat
Photo Description |
AeroVironment, Inc., crew members prepare the Pathfinder solar-powered aircraft for its first flight on Rogers Dry Lake at NASA's Dryden Flight Research Center, Edwards, California, after its configuration was shanged from 8 electric motors to 6. Bob Curtin of AeroVironment is in the foreground of the photo. |
Project Description |
Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the "Pathfinder" or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft?s six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.) |
Photo Date |
1995 |
|
Pathfinder aircraft in fligh
Photo Description |
The Pathfinder solar-powered research aircraft heads for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. |
Project Description |
Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the "Pathfinder" or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft?s six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.) |
Photo Date |
November 19, 1996 |
|
Pathfinder aircraft in fligh
Photo Description |
The Pathfinder solar-powered research aircraft is silhouetted against a clear blue sky as it soars aloft during a checkout flight from the Dryden Flight Research Center, Edwards, California, November, 1996. |
Project Description |
Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the "Pathfinder" or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft?s six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.) |
Photo Date |
November 19, 1996 |
|
Pathfinder aircraft in fligh
Photo Description |
The unique Pathfinder solar-powered flying wing, is shown during a checkout flight from the Dryden Flight Research Center, Edwards, California. This two-hour low-altitude flight over Rogers Dry Lake, Nov. 19, 1996, served to test aircraft systems and functional procedures, according to officials of AeroVironment, Inc., Pathfinder's developer and operator. |
Project Description |
Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the "Pathfinder" or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft?s six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.) |
Photo Date |
19 Nov 1996 |
|
ERAST Program Proteus Aircra
Photo Description |
The Proteus high-altitude aircraft on the ramp at the Mojave Airport in Mojave, California. |
Project Description |
In the Proteus Project, NASA?s Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus?s deployment to the Paris Airshow in 1999. NASA?s ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association?s "AirVenture 99" Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds, empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each. |
Photo Date |
July 26, 1999 |
|
Eclipse tow flight closeup a
Eclipse takeoff and flight
Eclipse QF-106 tethered flig
Eclipse QF-106 tethered flig
Perseus A, Part of the ERAST
Photo Description |
The Perseus A remotely-piloted research vehicle flies low over Rogers Dry Lake on its maiden voyage Dec. 21, 1993, at the Dryden Flight Research Center, Edwards, California. The Perseus, designed and built by Aurora Flight Sciences Corp., was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. |
Project Description |
Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry, lakebed after a propeller shaft failure. After a number of improvements and upgrades?including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller. |
Photo Date |
December 21, 1993 |
|
X-38 research aircraft - Fir
X-38 vehicle descending towa
X-38 research aircraft deorb
X-38 research aircraft landi
X-38 research aircraft launc
Linear Aerospike SR-71 Exper
Photo Description |
The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST."I think all in all we had a good mission today," Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew "thought it was a really good flight." Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, "We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE." |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
March 4, 1998 |
|
Perseus B Heads for Landing
Photo Description |
The Perseus B remotely piloted aircraft nears touchdown at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden Flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. |
Project Description |
Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry, lakebed after a propeller shaft failure. After a number of improvements and upgrades?including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller. |
Photo Date |
April 30, 1997 |
|
Shuttle Atlantis returning t
Title |
Shuttle Atlantis returning to Kennedy Space Center |
Full Description |
The Space Shuttle Atlantis atop the Shuttle Carrier Aircraft (SCA) returns to the Kennedy Space Center after a ten month refurbishment. |
Date |
09/01/1998 |
NASA Center |
Dryden Flight Research Center |
|
DC-8 Airborne Laboratory in
Photo Description |
NASA's DC-8 Airborne Science platform shown against a background of a dark blue sky on February 20, 1998. The aircraft is shown from the right rear, slightly above its plane, with the right wing in the foreground and the left wing and horizontal tail in the background. The former airliner is a "dash-72" model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. |
Project Description |
NASA used a DC-8 aircraft as a flying science laboratory. The platform aircraft, was based at NASA's Dryden Flight Research Center, Edwards, Calif., collected data for many experiments in support of scientific projects serving the world scientific community. Included in this community were NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing has been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology. |
Photo Date |
February 20, 1998 |
|
DC-8 Airborne Laboratory in
Photo Description |
The DC-8 in flight near Lone Pine, Calif. In the foreground are the Sierra Nevada Mountains, covered with winter snow. In the distance are the White Mountains. The DC-8's fuselage is painted white with a dark blue stripe down the side. The wings are silver, while the engine pods are white. In this view of the airplane's right-hand side, only a few of its antennas are visible. The experimental payload can be as great as 30,000 pounds of equipment for gathering data of various sorts. |
Project Description |
NASA used a DC-8 aircraft as a flying science laboratory. The platform aircraft, was based at NASA's Dryden Flight Research Center, Edwards, Calif., collected data for many experiments in support of scientific projects serving the world scientific community. Included in this community were NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing has been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology. |
Photo Date |
February 25, 1998 |
|
Pilot James Barrilleaux with
Photo Date |
March 18, 1998 |
|
Linear Aerospike SR-71 Exper
Photo Description |
This photograph shows a ground cold flow test of the linear aerospike rocket engine mounted on the rear fuselage of an SR-71. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
February 12, 1998 |
|
Pathfinder Aircraft in Fligh
Title |
Pathfinder Aircraft in Flight |
Full Description |
The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long- duration, high-altitude flight. Its name denotes its mission as the "Pathfinder" or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar- powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. |
Date |
07/27/1995 |
NASA Center |
Dryden Flight Research Center |
|
Photo Description |
NASA'S ER-2 #806 lifts off from Edwards Air Force Base on a CALIPS/CloudSat validation instrument checkout flight. |
Project Description |
ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2. |
Photo Date |
July 13, 2006 |
|
Photo Description |
The large air intakes for its powerful engine are obvious as NASA's high-flying ER-2 #806 Earth resources aircraft taxies out for another science mission. |
Project Description |
ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2. |
Photo Date |
July 13, 2006 |
|
Shuttle Atlantis Returning t
Photo Description |
The Space Shuttle Atlantis rides on the back of one of NASA?s Boeing 747 Shuttle Carrier Aircraft en route from California to the Kennedy Space Center, Florida. |
Project Description |
470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site., Space Shuttles are the main element of America?s Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle?s altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International?s Space Transportation Systems Division, Downey, California. Rockwell?s Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of |
Photo Date |
September 1998 |
|
Shuttle Atlantis Returning t
Photo Description |
The Space Shuttle orbiter Atlantis, framed by the California mountains, as it rides on the back of one of NASA?s Boeing 747 Shuttle Carrier Aircraft (SCA) en route from California to the Kennedy Space Center, Florida. |
Project Description |
470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site., Space Shuttles are the main element of America?s Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle?s altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International?s Space Transportation Systems Division, Downey, California. Rockwell?s Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of |
Photo Date |
September 1998 |
|
ERAST Program Proteus Aircra
Photo Description |
The unique shape of the Proteus high-altitude aircraft is clearly visible in this photo of the plane in flight above the rocky slopes of the Tehachapi Mountains near Mojave, California, where the Proteus was designed and built. |
Project Description |
In the Proteus Project, NASA?s Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus?s deployment to the Paris Airshow in 1999. NASA?s ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association?s "AirVenture 99" Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds,empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each. |
Photo Date |
September 1999 |
|
X-38 research aircraft remov
X-38 research aircraft - sec
Pathfinder-Plus aircraft fli
Pathfinder - closeup of flig
Photo Description |
This photo shows the crew preparing the Pathfinder aircraft for a flight from Rogers Dry Lakebed on Edwards Air Force Base, California. |
Project Description |
Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the "Pathfinder" or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft?s six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.) |
Photo Date |
1995 |
|
Linear Aerospike SR-71 Exper
Photo Description |
This photograph shows the LASRE pod on the upper rear fuselage of an SR-71 aircraft during take-off of the first flight to experience an in-flight cold flow test. The flight occurred on 4 March 1998. |
Project Description |
The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the "canoe," which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a "pod." The experiment focused on determining how a reusable launch vehicle?s engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag, design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA?s SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States?s economic competitiveness. In March 2001, however, NASA cancelled the X-33 program. |
Photo Date |
4 Mar 1998 |
|
Pathfinder-Plus on flight ov
Photo Description |
Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
Pathfinder-Plus takes off on
Photo Description |
Pathfinder-Plus on a flight over Hawaii in 1998. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
Pathfinder-Plus on flight ov
Photo Description |
Pathfinder-Plus on flight over Hawaii. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
Pathfinder-Plus on flight ov
Photo Description |
Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
Pathfinder-Plus on a flight
Photo Description |
Pathfinder-Plus on a flight in 1998 over Hawaiian waters. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
Pathfinder-Plus on flight ov
Photo Description |
Pathfinder-Plus on flight over Hawaiian Islands in 1998. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun. 1998 |
|
Pathfinder-Plus on flight ov
Photo Description |
Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
Pathfinder-Plus on flight ov
Photo Description |
Pathfinder-Plus flying over the Hawaiian Islands in 1998 with Ni'ihau Island in the background. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
Pathfinder-Plus on flight ne
Photo Description |
Pathfinder-Plus on a flight with the Hawaiian island of N'ihau in the background. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
Pathfinder-Plus on flight in
Photo Description |
Pathfinder-Plus on a flight over Hawaii in 1998. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
Pathfinder-Plus on a flight
Photo Description |
Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. |
Project Description |
Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus? Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA?s Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA?s Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA?s Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder?s solar arrays produced approximately 8,000 watts of power while Pathfinder Plus?, solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam. |
Photo Date |
17 Jun 1998 |
|
JetStar in flight
Title |
JetStar in flight |
Description |
The C-140 JetStar was reconfigured as the General Purpose Airborne Simulator (GPAS) to simulate the flight characteristics of other aircraft. The JetStar was used for research for supersonic transports, general aviation aircraft, and as a training support aircraft for the Space Shuttle Approach and Landing tests at Dryden Flight Research Center (under different names) at Edwards, CA, in 1977. One of the engineers on the GPAS program was Ken Szalai, who later became Dryden's director from 1990 to August 1998. This C-140 JetStar was flown by NASA's Dryden Flight Research Center, Edwards, California, from 1964 to 1989 in a variety of projects applicable to civilian aircraft. Built by Lockheed, the aircraft-NASA 814-was used in a laminar flow study to help develop methods of designing more efficient aircraft wings. The JetStar was later used as a testbed to investigate acoustic characteristics of a series of subscale advanced design propellors which featured blades that curved rearward. The aircraft was also used as a support vehicle during the Space Shuttle Approach and Landing Tests at Dryden in 1977, and for a variety of general purpose airborne simulation studies related to general aviation aircraft. |
Date |
01.01.1970 |
|
Perseus A on Ramp
Photo Description |
The Perseus A, a remotely-piloted, high-altitude research vehicle, is seen just after landing on Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus A had a unique method of takeoff and landing. To make the aircraft as aerodynamic and lightweight as possible, designers gave it only two very small centerline wheels for landing. These wheels were very close to the fuselage, and therefore produced very little drag. However, since the fuselage sat so close to the ground, it was necessary to keep the large propeller at the rear of the aircraft locked in a horizontal position during takeoff. The aircraft was towed to about 700 feet in the air, where the engine was started and the aircraft began flying under its own power. |
Project Description |
Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry, lakebed after a propeller shaft failure. After a number of improvements and upgrades?including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller. |
Photo Date |
15 Aug 1994 |
|
Proteus aircraft low-level f
Photo Description |
Proteus aircraft low-level flyby at Las Cruces Airport. |
Project Description |
The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. Designed by Burt Rutan, president of Scaled Composites, LLC, of Mojave, Calif., Proteus is an "optionally piloted" aircraft ordinarily flown by two pilots in a pressurized cabin. However, it also has the capability to perform its missions semi-autonomously or flown remotely from the ground. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows Proteus to be reconfigured for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. Proteus has an all-composite airframe with graphite-epoxy sandwich construction. Its wingspan of 77 feet 7 inches is expandable to 92 feet with removable wingtips installed. Proteus is 56.3 feet long, 17.6 feet high and weighs 5,900 pounds empty. Proteus is powered by two Williams FJ44-2 turbofan engines, each rated at 2,300 pounds of thrust. Flight testing of the Proteus began in the summer of 1998 at Mojave Airport and continued through the end of 1999. Under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, NASA's Dryden Flight Research Center assisted Scaled Composites in developing a sophisticated station-keeping autopilot system and a satellite communications (SATCOM)-based uplink-downlink data system for Proteus' performance and payload data. Flight testing included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, was installed and checked out in several flight tests. The systems performed flawlessly during Proteus' deployment to the Paris Airshow in 1999. NASA has used Proteus as a testbed for a variety of technologies related to maturing unmanned air vehicles (UAVs) for use in civil applications. A small Airborne Real-Time Imaging System (ARTIS) camera, developed by HyperSpectral Sciences, Inc., under NASA's ERAST project, was demonstrated during the summer of 1999 when it took visual and near-infrared photos from Proteus while it was flying high over the Experimental Aircraft Association's "AirVenture 99" Airshow at Oshkosh, Wisc. The images were displayed on a computer monitor at the show only moments after they were taken. In March 2002, NASA Dryden, in cooperation with New Mexico State University's Technical Analysis and Applications Center (TAAC), the FAA and several other entities, conducted flight demonstrations of an active detect, see, and avoid (DSA) system for potential application to unmanned aerial vehicles (UAVs) out of Las Cruces, New Mexico. Proteus was flown as a surrogate UAV controlled remotely from the ground, although safety pilots were aboard to handle takeoff and landing and any potential emergencies. Three other aircraft, ranging from general aviation aircraft to a NASA F/A-18, served as "cooperative" target aircraft with an operating transponder. In each of 18 different scenarios, a Goodrich Skywatch HP Traffic Advisory System (TAS) on the Proteus detected approaching air traffic on potential collision courses, including several scenarios with two aircraft approaching from different directions. The remote pilot then directed Proteus to turn, climb or descend as needed to avoid the potential threat. In April 2003, a second series of flight demonstrations focusing on "non-cooperative" aircraft (those without operating transponders), was conducted in restricted airspace near Mojave, Calif., again using the Proteus as a surrogate UAV. Proteus was equipped with a small Amphitech OASys 35 Ghz primary radar system to detect potential intruder aircraft on simulated collision courses. The radar data was telemetered directly to the ground station as well as via an Inmarsat satellite system installed on Proteus. A mix of seven intruder aircraft, ranging from a sailplane to a high-speed jet, flew 20 scenarios over a four-day period, one or two aircraft at a time. In each case, the radar picked up the intruding aircraft at ranges from 2.5 to 6.5 miles, depending on the intruder's radar signature. Proteus' remote pilot on the ground was able to direct Proteus to take evasive action if needed. Based on the preliminary results of both series of tests, project engineers believe that some upgrades would have to be made to both the Skywatch and the OASys detection systems to maximize their effectiveness as collision-avoidance detection sensors for UAVs. Additional flight tests of other types of detection systems, such as electro-optical infrared devices, may occur in the future under a follow-on program in an effort to establish an equivalent level of safety for UAVs to that now required of manned aircraft. The ERAST Project is sponsored by the Office of Aerospace Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center, Edwards, Calif. |
Photo Date |
March 15, 2002 |
|
Amphitech Radar on Proteus
Photo Description |
An Amphitech OASys Ka-band radar was the primary sensor installed on Scaled Composites' Proteus for the second phase of NASA-sponsored unmanned aerial vehicle Detect, See and Avoid flight tests. |
Project Description |
The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. Designed by Burt Rutan, president of Scaled Composites, LLC, of Mojave, Calif., Proteus is an "optionally piloted" aircraft ordinarily flown by two pilots in a pressurized cabin. However, it also has the capability to perform its missions semi-autonomously or flown remotely from the ground. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows Proteus to be reconfigured for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. Proteus has an all-composite airframe with graphite-epoxy sandwich construction. Its wingspan of 77 feet 7 inches is expandable to 92 feet with removable wingtips installed. Proteus is 56.3 feet long, 17.6 feet high and weighs 5,900 pounds empty. Proteus is powered by two Williams FJ44-2 turbofan engines, each rated at 2,300 pounds of thrust. Flight testing of the Proteus began in the summer of 1998 at Mojave Airport and continued through the end of 1999. Under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, NASA's Dryden Flight Research Center assisted Scaled Composites in developing a sophisticated station-keeping autopilot system and a satellite communications (SATCOM)-based uplink-downlink data system for Proteus' performance and payload data. Flight testing included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, was installed and checked out in several flight tests. The systems performed flawlessly during Proteus' deployment to the Paris Airshow in 1999. NASA has used Proteus as a testbed for a variety of technologies related to maturing unmanned air vehicles (UAVs) for use in civil applications. A small Airborne Real-Time Imaging System (ARTIS) camera, developed by HyperSpectral Sciences, Inc., under NASA's ERAST project, was demonstrated during the summer of 1999 when it took visual and near-infrared photos from Proteus while it was flying high over the Experimental Aircraft Association's "AirVenture 99" Airshow at Oshkosh, Wisc. The images were displayed on a computer monitor at the show only moments after they were taken. In March 2002, NASA Dryden, in cooperation with New Mexico State University's Technical Analysis and Applications Center (TAAC), the FAA and several other entities, conducted flight demonstrations of an active detect, see, and avoid (DSA) system for potential application to unmanned aerial vehicles (UAVs) out of Las Cruces, New Mexico. Proteus was flown as a surrogate UAV controlled remotely from the ground, although safety pilots were aboard to handle takeoff and landing and any potential emergencies. Three other aircraft, ranging from general aviation aircraft to a NASA F/A-18, served as "cooperative" target aircraft with an operating transponder. In each of 18 different scenarios, a Goodrich Skywatch HP Traffic Advisory System (TAS) on the Proteus detected approaching air traffic on potential collision courses, including several scenarios with two aircraft approaching from different directions. The remote pilot then directed Proteus to turn, climb or descend as needed to avoid the potential threat. In April 2003, a second series of flight demonstrations focusing on "non-cooperative" aircraft (those without operating transponders), was conducted in restricted airspace near Mojave, Calif., again using the Proteus as a surrogate UAV. Proteus was equipped with a small Amphitech OASys 35 Ghz primary radar system to detect potential intruder aircraft on simulated collision courses. The radar data was telemetered directly to the ground station as well as via an Inmarsat satellite system installed on Proteus. A mix of seven intruder aircraft, ranging from a sailplane to a high-speed jet, flew 20 scenarios over a four-day period, one or two aircraft at a time. In each case, the radar picked up the intruding aircraft at ranges from 2.5 to 6.5 miles, depending on the intruder's radar signature. Proteus' remote pilot on the ground was able to direct Proteus to take evasive action if needed. Based on the preliminary results of both series of tests, project engineers believe that some upgrades would have to be made to both the Skywatch and the OASys detection systems to maximize their effectiveness as collision-avoidance detection sensors for UAVs. Additional flight tests of other types of detection systems, such as electro-optical infrared devices, may occur in the future under a follow-on program in an effort to establish an equivalent level of safety for UAVs to that now required of manned aircraft. The ERAST Project is sponsored by the Office of Aerospace Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center, Edwards, Calif. |
Photo Date |
April 1, 2003 |
|
Proteus front view in flight
Photo Description |
Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests. |
Project Description |
The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. Designed by Burt Rutan, president of Scaled Composites, LLC, of Mojave, Calif., Proteus is an "optionally piloted" aircraft ordinarily flown by two pilots in a pressurized cabin. However, it also has the capability to perform its missions semi-autonomously or flown remotely from the ground. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows Proteus to be reconfigured for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. Proteus has an all-composite airframe with graphite-epoxy sandwich construction. Its wingspan of 77 feet 7 inches is expandable to 92 feet with removable wingtips installed. Proteus is 56.3 feet long, 17.6 feet high and weighs 5,900 pounds empty. Proteus is powered by two Williams FJ44-2 turbofan engines, each rated at 2,300 pounds of thrust. Flight testing of the Proteus began in the summer of 1998 at Mojave Airport and continued through the end of 1999. Under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, NASA's Dryden Flight Research Center assisted Scaled Composites in developing a sophisticated station-keeping autopilot system and a satellite communications (SATCOM)-based uplink-downlink data system for Proteus' performance and payload data. Flight testing included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, was installed and checked out in several flight tests. The systems performed flawlessly during Proteus' deployment to the Paris Airshow in 1999. NASA has used Proteus as a testbed for a variety of technologies related to maturing unmanned air vehicles (UAVs) for use in civil applications. A small Airborne Real-Time Imaging System (ARTIS) camera, developed by HyperSpectral Sciences, Inc., under NASA's ERAST project, was demonstrated during the summer of 1999 when it took visual and near-infrared photos from Proteus while it was flying high over the Experimental Aircraft Association's "AirVenture 99" Airshow at Oshkosh, Wisc. The images were displayed on a computer monitor at the show only moments after they were taken. In March 2002, NASA Dryden, in cooperation with New Mexico State University's Technical Analysis and Applications Center (TAAC), the FAA and several other entities, conducted flight demonstrations of an active detect, see, and avoid (DSA) system for potential application to unmanned aerial vehicles (UAVs) out of Las Cruces, New Mexico. Proteus was flown as a surrogate UAV controlled remotely from the ground, although safety pilots were aboard to handle takeoff and landing and any potential emergencies. Three other aircraft, ranging from general aviation aircraft to a NASA F/A-18, served as "cooperative" target aircraft with an operating transponder. In each of 18 different scenarios, a Goodrich Skywatch HP Traffic Advisory System (TAS) on the Proteus detected approaching air traffic on potential collision courses, including several scenarios with two aircraft approaching from different directions. The remote pilot then directed Proteus to turn, climb or descend as needed to avoid the potential threat. In April 2003, a second series of flight demonstrations focusing on "non-cooperative" aircraft (those without operating transponders), was conducted in restricted airspace near Mojave, Calif., again using the Proteus as a surrogate UAV. Proteus was equipped with a small Amphitech OASys 35 Ghz primary radar system to detect potential intruder aircraft on simulated collision courses. The radar data was telemetered directly to the ground station as well as via an Inmarsat satellite system installed on Proteus. A mix of seven intruder aircraft, ranging from a sailplane to a high-speed jet, flew 20 scenarios over a four-day period, one or two aircraft at a time. In each case, the radar picked up the intruding aircraft at ranges from 2.5 to 6.5 miles, depending on the intruder's radar signature. Proteus' remote pilot on the ground was able to direct Proteus to take evasive action if needed. Based on the preliminary results of both series of tests, project engineers believe that some upgrades would have to be made to both the Skywatch and the OASys detection systems to maximize their effectiveness as collision-avoidance detection sensors for UAVs. Additional flight tests of other types of detection systems, such as electro-optical infrared devices, may occur in the future under a follow-on program in an effort to establish an equivalent level of safety for UAVs to that now required of manned aircraft. The ERAST Project is sponsored by the Office of Aerospace Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center, Edwards, Calif. |
Photo Date |
March 27, 2003 |
|
PHYSX undergoing thermal tes
PHYSX Thermal Ground Test of
Proteus DSA control room in
Photo Description |
Proteus DSA control room in Mojave, CA (L to R) Jean-Pierre Soucy, Amphitech International Software engineer Craig Bomben, NASA Dryden Test Pilot Pete Siebold, (with headset, at computer controls) Scaled Composites pilot Bob Roehm, New Mexico State University (NMSU) UAV Technical Analysis Application Center (TAAC) Chuck Coleman, Scaled Composites Pilot Kari Sortland, NMSU TAAC Russell Wolfe, Modern Technology Solutions, Inc. Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests. |
Project Description |
The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. Designed by Burt Rutan, president of Scaled Composites, LLC, of Mojave, Calif., Proteus is an "optionally piloted" aircraft ordinarily flown by two pilots in a pressurized cabin. However, it also has the capability to perform its missions semi-autonomously or flown remotely from the ground. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows Proteus to be reconfigured for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. Proteus has an all-composite airframe with graphite-epoxy sandwich construction. Its wingspan of 77 feet 7 inches is expandable to 92 feet with removable wingtips installed. Proteus is 56.3 feet long, 17.6 feet high and weighs 5,900 pounds empty. Proteus is powered by two Williams FJ44-2 turbofan engines, each rated at 2,300 pounds of thrust. Flight testing of the Proteus began in the summer of 1998 at Mojave Airport and continued through the end of 1999. Under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, NASA's Dryden Flight Research Center assisted Scaled Composites in developing a sophisticated station-keeping autopilot system and a satellite communications (SATCOM)-based uplink-downlink data system for Proteus' performance and payload data. Flight testing included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, was installed and checked out in several flight tests. The systems performed flawlessly during Proteus' deployment to the Paris Airshow in 1999. NASA has used Proteus as a testbed for a variety of technologies related to maturing unmanned air vehicles (UAVs) for use in civil applications. A small Airborne Real-Time Imaging System (ARTIS) camera, developed by HyperSpectral Sciences, Inc., under NASA's ERAST project, was demonstrated during the summer of 1999 when it took visual and near-infrared photos from Proteus while it was flying high over the Experimental Aircraft Association's "AirVenture 99" Airshow at Oshkosh, Wisc. The images were displayed on a computer monitor at the show only moments after they were taken. In March 2002, NASA Dryden, in cooperation with New Mexico State University's Technical Analysis and Applications Center (TAAC), the FAA and several other entities, conducted flight demonstrations of an active detect, see, and avoid (DSA) system for potential application to unmanned aerial vehicles (UAVs) out of Las Cruces, New Mexico. Proteus was flown as a surrogate UAV controlled remotely from the ground, although safety pilots were aboard to handle takeoff and landing and any potential emergencies. Three other aircraft, ranging from general aviation aircraft to a NASA F/A-18, served as "cooperative" target aircraft with an operating transponder. In each of 18 different scenarios, a Goodrich Skywatch HP Traffic Advisory System (TAS) on the Proteus detected approaching air traffic on potential collision courses, including several scenarios with two aircraft approaching from different directions. The remote pilot then directed Proteus to turn, climb or descend as needed to avoid the potential threat. In April 2003, a second series of flight demonstrations focusing on "non-cooperative" aircraft (those without operating transponders), was conducted in restricted airspace near Mojave, Calif., again using the Proteus as a surrogate UAV. Proteus was equipped with a small Amphitech OASys 35 Ghz primary radar system to detect potential intruder aircraft on simulated collision courses. The radar data was telemetered directly to the ground station as well as via an Inmarsat satellite system installed on Proteus. A mix of seven intruder aircraft, ranging from a sailplane to a high-speed jet, flew 20 scenarios over a four-day period, one or two aircraft at a time. In each case, the radar picked up the intruding aircraft at ranges from 2.5 to 6.5 miles, depending on the intruder's radar signature. Proteus' remote pilot on the ground was able to direct Proteus to take evasive action if needed. Based on the preliminary results of both series of tests, project engineers believe that some upgrades would have to be made to both the Skywatch and the OASys detection systems to maximize their effectiveness as collision-avoidance detection sensors for UAVs. Additional flight tests of other types of detection systems, such as electro-optical infrared devices, may occur in the future under a follow-on program in an effort to establish an equivalent level of safety for UAVs to that now required of manned aircraft. The ERAST Project is sponsored by the Office of Aerospace Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center, Edwards, Calif. |
Photo Date |
April 3, 2003 |
|
Pathfinder ground preparatio
Photo Description |
Technicians make final adjustments on the solar-powered Pathfinder remotely piloted research aircraft prior to the craft's taking off on a flight which established a new unofficial world's altitude record for both propellor-driven and solar-powered aircraft. The new record of more than 71,500 feet was set during a 14 1/2-hour flight July 7, 1997, from the U.S. Navy's Pacific Missile Range Facility (PMRF) at Barking Sands, Kauai, Hawaii. The new altitude record is subject to verification by the National Aeronautics Association. The Pathfinder took off at 8:34 a.m. HDT, passed its previous record altitude of 67,350 feet about 2:45 p.m., and then reached its new mark at about 4 p.m. Controllers on the ground then initiated a slow decent, and Pathfinder landed seven hours later at 11:05 p.m. HDT. The experimental Boeing Condor remotely-piloted aircraft had held the previous record for propellor-driven craft of 67,028 feet. The Pathfinder had exceeded that height on a previous flight on June 9, 1997, but not by a large enough margin to be considered a new record. |
Project Description |
Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the "Pathfinder" or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft?s six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.) |
Photo Date |
7 Jul. 1997 |
|
DC-8 Airborne Laboratory in
Title |
DC-8 Airborne Laboratory in flight over NASA Dryden center with SCA 747 on ramp |
Description |
The DC-8 aircraft is seen making a banking turn high above the NASA Dryden ramp. This view of the DC-8's left side reveals some of the modifications necessary for particular on-board experiments. To the right of the DC-8 is the edge of Rogers Dry Lake. Above the aircraft's forward fuselage is the Dryden Flight Research Center headquarters building, while other NASA facilities extend down the flightline to the right. Below the DC-8 is the Shuttle Carrier Aircraft (SCA), on which are visible attachment points for the Shuttle Orbiter. |
Date |
02.25.1998 |
|
Centurion on Ramp with Onloo
Title |
Centurion on Ramp with Onlookers |
Description |
Onlookers are dwarfed by the 206-foot wingspan of the Centurion flying wing on a hangar ramp at NASA's Dryden Flight Research Center, Edwards, California. The Centurion demonstrated its flying qualities during three battery-powered flights under control of a ground-based pilot at Dryden in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of, solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Eclipse - tow flight closeup
Title |
Eclipse - tow flight closeup and release |
Description |
This clip, running 15 seconds in length, shows the QF-106 "Delta Dart" gear down, with the tow rope secured to the attachment point above the aircraft nose. First there is a view looking back from the C-141A, then looking forward from the nose of the QF-106, and finally a shot of the aircraft being released from the tow rope. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate a reusable tow launch vehicle concept developed by KST. Kelly Space and Technology hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable, actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system, and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft, validation of simulation models of the towed aircraft systems, and development of ground and flight procedures for towing, and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on Dec. 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests to validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft. |
Date |
02.05.1998 |
|
Eclipse takeoff and flight
Title |
Eclipse takeoff and flight |
Description |
This 25-second clip shows the QF-106 "Delta Dart" tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable, actual flight measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system, and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft, validation of simulation models of the towed aircraft systems, and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied, engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on December 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests that would validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft. |
Date |
02.05.1998 |
|
Kenneth J. Szalai
Title |
Kenneth J. Szalai |
Description |
(AIAA) and Society of Automotive Engineers (SAE). Szalai, a Fellow of the AIAA, also served on the National Academy of Science's "Aeronautics-2000" study. Among the awards Szalai has received are NASA's Exceptional Service Medal, the NASA Outstanding Leadership Medal, and the Presidential Meritorious and Distinguished Rank awards. Szalai was born June 1, 1942, in Milwaukee, Wisc., where he graduated from West Division High School., Kenneth J. Szalai was Director of the NASA Hugh L. Dryden Flight Research Center, Edwards, Calif., from January 1994 through July 1998. He retired from NASA at the end of July to join IBP Aerospace Group, Inc., as the company's new president and chief operating officer. As NASA's primary installation for flight research for more than half a century, Dryden is chartered to conceive and conduct experimental flight research for integrated flight and propulsion controls, advanced optical sensors and controls, viscous drag reduction, advanced configurations, high-altitude, long-endurance aircraft, remotely piloted vehicle technology, hypersonic vehicle experiments, high-speed research for civil transportation, atmospheric tests of advanced rocket and airbreathing propulsion concepts, instrumentation systems, and flight loads predictions. In carrying out this mission, Dryden operates some of the most advanced research aircraft in the nation. When Dryden was administratively a part of the NASA Ames Research Center, Moffett Field, Calif., Szalai was director and also held the position of Ames Deputy Director for Dryden from December 1990 until assuming his current position From 1982 until December 1990, Szalai directed the Dryden Research Engineering Division. He served as Associate Director of the Ames Research Center in 1989. Prior to 1982 he was chief of the Research Engineering Division's Dynamics and Control Branch, and chief of the Flight Control Section. Szalai began his NASA career at Dryden in 1964 following graduation from the University of Wisconsin, where he attended both the Milwaukee and Madison campuses. His bachelor of science degree is in electrical engineering. He also received a master of science degree in mechanical engineering from the University of Southern California in 1970. Szalai was principal investigator on the F-8 Digital Fly-By-Wire program, which successfully flew the first aircraft equipped with a digital electronic flight control system without any mechanical reversion capability. Szalai also held research and systems engineering positions on several research aircraft programs investigating flying qualities, integrated flight controls, and fault tolerant-flight critical systems. He was also flight test engineer and principal investigator on the NASA Airborne Simulator before assuming management positions within the Research Engineering Division. Szalai has worked in various technical and management positions on such programs as the F-111 IPCS, AFTI/F-16, HiMAT, F-15 DEEC, F-15 HIDEC, X-29, X-31, F-16XL Laminar Flow, Space Shuttle Orbiter, Pathfinder Solar Powered Aircraft, SR-71 Sonic Boom, F-15 and MD-11 Propulsion Controlled Aircraft, X-33, and X-38. Szalai has authored over 25 papers and reports and has been a lecturer for the NATO Advisory Group for Aeronautical Research and Development (AGARD). He has served on various technical committees and subcommittees for the American Institute of Aeronautics and Astronautics |
Date |
01.08.1997 |
|
Kevin L. Petersen
Title |
Kevin L. Petersen |
Description |
KEVIN L. PETERSEN Kevin L. Petersen is Director of the NASA Dryden Flight Research Center, Edwards, Calif., a position he assumed Feb. 8, 1999. He had served as acting Director of Dryden since Aug. 1, 1998. As NASA's primary installation for flight research for more than half a century, Dryden is chartered to conceive and conduct experimental flight research for integrated flight and propulsion controls, advanced optical sensors and controls, viscous drag reduction, advanced configurations, high-altitude, long-endurance aircraft, remotely piloted vehicle technology, hypersonic vehicle experiments, high-speed research for civil transportation, atmospheric tests of advanced rocket and airbreathing propulsion concepts, instrumentation systems, and flight loads predictions. In carrying out this mission, Dryden operates some of the most advanced research aircraft in the nation. From January 1996 to July 1998, Petersen had served as Dryden's Deputy Director. Before his assignment as Deputy Director, Petersen had served as acting Deputy Director since April 18, 1994. He had previously served since November 1993 as Assistant to the Director and from February 1992 to November 1993 as chief of the Center's National AeroSpace Plane Projects Office. His earlier assignments at the Center included being chief of the Dynamics and Controls Branch within the Research Engineering Division. There, he provided multidisciplinary support to a variety of research programs in the areas of flight dynamics and controls, structural dynamics, and flight systems. Programs he supported in these capacities included the F-18 High Angle-of-Attack Research Vehicle (HARV), the X-29 Forward Swept Wing technology demonstrator aircraft, and the National AeroSpace Plane program. Petersen served as chief of the Flight Controls Section from 1982 to 1985, chief engineer of the X-29 flight research project from 1985 to 1986, and chief of the Vehicle Technology Branch from 1989 to 1990. Earlier in his career at Dryden, which he began as a university co-op student in 1971, Petersen worked as a research engineer on the F-8 Digital Fly-By-Wire and the Highly Maneuverable Aircraft Technology (HiMAT) programs. He joined Dryden as an aerospace engineer in 1974. He was born on October 4, 1951, in LeMars, IA. He graduated from Iowa State University in 1974 with a bachelor of science degree in aerospace engineering and earned a master of science degree from UCLA in 1976, specializing in control systems. In 1979, he furthered his education at Stanford University in a year-long graduate engineering program. He received NASA's Exceptional Engineering Medal in 1985 and NASA's Exceptional Service Medal in 1987 for his contributions to the agency. February 1999 |
Date |
02.08.1999 |
|
Kevin L. Petersen
Title |
Kevin L. Petersen |
Description |
Kevin L. Petersen is Director of the NASA Dryden Flight Research Center, Edwards, California, a position he assumed Feb. 8, 1999. He had served as acting Director of Dryden since Aug. 1, 1998. As NASA's primary installation for flight research for more than half a century, Dryden is chartered to conceive and conduct experimental flight research for integrated flight and propulsion controls, advanced optical sensors and controls, viscous drag reduction, advanced configurations, high-altitude, long-endurance aircraft, remotely piloted vehicle technology, hypersonic vehicle experiments, high-speed research for civil transportation, atmospheric tests of advanced rocket and airbreathing propulsion concepts, instrumentation systems, and flight loads predictions. In carrying out this mission, Dryden operates some of the most advanced research aircraft in the nation. From January 1996 to July 1998, Petersen had served as Dryden's Deputy Director. Before his assignment as Deputy Director, Petersen had served as acting Deputy Director since April 18, 1994. He had previously served since November 1993 as Assistant to the Director and from February 1992 to November 1993 as chief of the Center's National AeroSpace Plane Projects Office. His earlier assignments at the Center included being chief of the Dynamics and Controls Branch within the Research Engineering Division. There, he provided multidisciplinary support to a variety of research programs in the areas of flight dynamics and controls, structural dynamics, and flight systems. Programs he supported in these capacities included the F-18 High Angle-of-Attack Research Vehicle (HARV), the X-29 Forward Swept Wing technology demonstrator aircraft, and the National AeroSpace Plane program. Petersen served as chief of the Flight Controls Section from 1982 to 1985, chief engineer of the X-29 flight research project from 1985 to 1986, and chief of the Vehicle Technology Branch from 1989 to 1990. Earlier in his career at Dryden, which he began as a university co-op student in 1971, Petersen worked as a research engineer on the F-8 Digital Fly-By-Wire and the Highly Maneuverable Aircraft Technology (HiMAT) programs. He joined Dryden as an aerospace engineer in 1974. He was born on October 4, 1951, in LeMars, IA. He graduated from Iowa State University in 1974 with a bachelor of science degree in aerospace engineering and earned a master of science degree from UCLA in 1976, specializing in control systems. In 1979, he furthered his education at Stanford University in a year-long graduate engineering program. He received NASA's Exceptional Engineering Medal in 1985 and NASA's Exceptional Service Medal in 1987 for his contributions to the agency. |
Date |
08.18.1999 |
|
LASRE ground hotfire #2 of t
Centurion during Takeoff ove
Title |
Centurion during Takeoff over Lakebed |
Description |
Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion., The Centurion remotely piloted flying wing demonstrated its flying qualities during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios |
Date |
12.01.1998 |
|
Centurion in Banked Flight
Title |
Centurion in Banked Flight |
Description |
The Centurion remotely piloted flying wing during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative, fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Centurion in Flight
Title |
Centurion in Flight |
Description |
The long, narrow wing design and lightweight structure of the Centurion remotely piloted flying wing is clearly visible in this photo, taken during an initial series of low-altitude, battery-powered flight tests with the aircraft at NASA's Dryden Flight Research Center in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and, improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Centurion in Flight
Title |
Centurion in Flight |
Description |
The long, curved wing of the Centurion remotely piloted flying wing is clearly visible in this photo, taken during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting, capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Centurion in Flight
Title |
Centurion in Flight |
Description |
The Centurion remotely piloted flying wing during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative, fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Centurion in Flight
Title |
Centurion in Flight |
Description |
The lightweight structure of the Centurion remotely piloted flying wing can be seen clearly in this photo from beneath the vehicle. The photo was taken during an initial series of low-altitude, battery-powered test flights conducted in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for, installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Centurion in Flight over Lak
Title |
Centurion in Flight over Lakebed |
Description |
The Centurion remotely piloted flying wing above the Rogers Dry Lake bed during one of its initial low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to, carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Centurion in Flight over Lak
Title |
Centurion in Flight over Lakebed |
Description |
The Centurion remotely piloted flying wing during an early morning test flight over the Rogers Dry Lake adjacent to at NASA's Dryden Flight Research Center, Edwards, California. The flight was one of an initial series of low-altitude, battery-powered test flights conducted in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells, and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Centurion in Flight over Lak
Title |
Centurion in Flight over Lakebed with STS Mate-DeMate Device in Background |
Description |
The Centurion remotely piloted flying wing in flight during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. The special Mate-DeMate structure used by NASA to attach Space Shuttle orbiters to the back of modified Boeing 747s for transport to other locations can be seen in the background of this photo. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among, other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Centurion in Flight Settling
Title |
Centurion in Flight Settling toward Landing |
Description |
Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion., The slow-flying Centurion solar-electric flying wing, one of several remotely piloted aircraft developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program, glides in for a landing on Rogers Dry Lake following a test flight at NASA's Dryden Flight Research Center, Edwards, California. The 206-foot-wingspan, lightweight aircraft demonstrated its flying qualities during an initial series of three low-altitude test flights under battery power in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios |
Date |
11.01.1998 |
|
Centurion in Flight with Int
Title |
Centurion in Flight with Internal Wing Structure Visible |
Description |
The lightweight wing structure and covering of the Centurion remotely piloted flying wing can be clearly seen in this photo of the plane during one of its initial low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and, improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
Centurion on Lakebed during
Title |
Centurion on Lakebed during Functional Checkout |
Description |
The Centurion solar-powered, remotely-piloted flying wing rests on the sun-baked surface of Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, during a functional checkout prior to its first test flights in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting, capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
10.01.1998 |
|
Centurion on Lakebed during
Title |
Centurion on Lakebed during Functional Checkout |
Description |
A close-up view of the 14 wide-bladed propellers and electric motors on the Centurion solar-powered, remotely piloted flying wing. This photo was taken during a functional checkout of the aircraft prior to its first test flights at NASA's Dryden Flight Research Center, Edwards, California, in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation, of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
10.01.1998 |
|
Centurion on Lakebed during
Title |
Centurion on Lakebed during Functional Checkout |
Description |
The Centurion remotely piloted, solar-powered aircraft is silhouetted by the early morning sun on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, during a functional checkout of the vehicle prior to its first flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting, capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
10.01.1998 |
|
Centurion on Lakebed Prior t
Title |
Centurion on Lakebed Prior to Flight at Sunrise |
Description |
The Centurion remotely piloted flying wing rests on the Rogers Dry Lake at sunrise, moments before takeoff. This photo was taken during an initial series of low-altitude, battery-powered test flights with the aircraft in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar, cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion. |
Date |
11.01.1998 |
|
A98-0242-1
Photographer: NASA Administr
11/24/98
Description |
Photographer: NASA Administrators Award for: 1. "Turning Goals into Reality" presented to Center TRACON Automation System Team, Langley Research Center October 9, 1998 2. "Turning Goals into Reality 1998 Goal Award for Excetptional Progress toward Next-Generation Design Tools and Experimental Aircraft acrylic |
Date |
11/24/98 |
|
Proteus UAV collision-avoida
Proteus UAV collision-avoida
Proteus UAV collision-avoida
NASA DFRC Lear 24 in flight
Title |
NASA DFRC Lear 24 in flight |
Description |
NASA Dryden Flight Research Center's Lear 24, tail number 805, in flight. The Lear 24 was modified as an airborne test aircraft, but on June 7, 2001, it was involved in a landing accident at Victorville. The crew was not hurt, but the aircraft was damaged beyond economical repair. |
Date |
10.30.1998 |
|
DC-8 Airborne Laboratory in
Title |
DC-8 Airborne Laboratory in flight over Mt. Whitney |
Description |
The DC-8 banking over the jagged peak of Mount Whitney on a February 25, 1998 flight. The DC-8 and a pair of ER-2 aircraft are operated by the Airborne Science program at the NASA Dryden Flight Research Center. NASA, other governmental agencies, academia, and scientific and technical organizations employ the DC-8 for a variety of experiments. |
Date |
02.25.1998 |
|
NASA Beechcraft KingAir #801
Title |
NASA Beechcraft KingAir #801 in flight |
Description |
NASA 801 Beechcraft Beech Super KingAir in flight. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying "shuttle" missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available. |
Date |
11.27.1998 |
|
Centurion during takeoff on
Title |
Centurion during takeoff on lakebed |
Description |
The Centurion solar-electric flying wing, one of several remotely piloted aircraft being developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program, touches down on a Rogers Dry Lake runway following a test flight at NASA's Dryden Flight Research Center, Edwards, Calif. The 206-foot-wingspan lightweight aircraft demonstrated its flying qualities during an initial series of three low-altitude test flights under battery power in late 1998. The Centurion was developed by AeroVironment, Inc., under NASA's ERAST program, managed by NASA Dryden. The Centurion is a prototype technology demonstrator designed to reach altitudes of 90,000 to 100,000 feet, powered entirely by the Sun. Solar cells will eventually cover most of the wing's upper surface, providing power to its 14 electric motors, flight controls and communications systems. Centurion is helping to validate technology for the Helios, a planned high-altitude solar-powered aircraft which could fly for days or weeks at a time on atmospheric sampling, telecommunications or imaging missions, using rechargeable fuel cells to maintain flight at night. |
Date |
12.01.1998 |
|
Tier 3- DarkStar on ramp fro
Title |
Tier 3- DarkStar on ramp from above |
Description |
The Lockheed Martin/Boeing Tier III- (minus) unpiloted aerial vehicle is inspected by NASA personnel September 14, 1995, following its arrival at the Dryden Flight Research Center, Edwards, California. The Tier III Minus project used Dryden ground facilities during the flight test program. The vehicle was developed by Lockheed Martin Skunk Works and Boeing Defense and Space Group to satisfy a goal of the Defense Airborne Reconnaissance Office to supply responsive and sustained data from anywhere within enemy territory, day or night, in all types of weather. Dubbed DarkStar, the vehicle, with a wing span of 69 feet, was designed to fly above 45,000 feet at subsonic speeds on missions lasting more than eight hours. The first DarkStar prototype (article #695) made its first flight on March 29, 1996. At the begininning of its second flight, on April 22, 1996, it crashed on takeoff, and was destroyed. The second Darkstar prototype (article #696) made five flights between June 29, 1998 and January 9, 1999. The program was cancelled on January 28, 1999. |
Date |
09.14.1997 |
|
SR-71 LASRE during in-flight
F-15A RPRV/SRV remotely pilo
NASA Langley Impact Dynamics
Title |
NASA Langley Impact Dynamics Research Facility |
Description |
Part of video describing the facilities of the Army Vehicle Technology center located at NASA Langley |
Date |
01.01.1998 |
|
Fourier Transform Spectromet
Title |
Fourier Transform Spectrometer |
Description |
The FTS is a compact interferometer with the capability to passively sense the Earth's surface and atmosperic radiation emissions and absorptions. It's a powerful, yet highly versatile instrument, being developed by technologists at NASA Langley Research Center, in partnership with other NASA centers, universities and industry.Using advanced materials, the FTS will be more compact and much lighter than current interferometers. |
Date |
04.01.1998 |
|
AC98-0242-2
Administrator award (two) Ce
11/28/98
Description |
Administrator award (two) Center-Tracon Automation system Team Langley Res. CTR and Goal Award 1998, Next-Genreation Design Tools and Experimental Aircraft- acrylic |
Date |
11/28/98 |
|
SR-71A on Ramp with Dual Max
Title |
SR-71A on Ramp with Dual Max Afterburner Engines Firing |
Description |
This night shot shows one of NASA's SR-71 Blackbird research aircraft on the ramp at the Dryden Flight Research Center, Edwards, California, with both engines running in max afterburner. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the "peak" overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the, speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another "A" model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967. |
Date |
01.01.1998 |
|
|