Search Results: All Fields similar to 'Voyager' and What equal to 'Voyager 2'

Printer Friendly
1 2 3 412 13
1-50 of 606
     
     
OUTWARD BOUND VOYAGER--A Tit …
Description OUTWARD BOUND VOYAGER--A Titan-Centaur launch vehicle hurls Voyager 1 from Cape Canaveral toward its rendezvous with Jupiter and Saturn. The launch took place at 5:56 a.m. (PDT) September 5, 1977. Voyager 1 followed Voyager 2 away from Earth, but by the time they reach Jupiter it will be four months ahead of Voyager 2. Voyager 1 will reach Saturn nine months ahead of Voyager 2. The Voyager project is managed by Caltech's Jet Propulsion Laboratory for NASA's Office of Space Science.
Voyager 2 Launch
Title Voyager 2 Launch
Full Description Voyager 2 was launched August 20, 1977, sixteen days before Voyager 1 aboard a Titan-Centaur rocket. Their different flight trajectories caused Voyager 2 to arrive at Jupiter four months later than Voyager 1, thus explaining their numbering. The initial mission plan for Voyager 2 specified visits only to Jupiter and Saturn. The plan was augmented in 1981 to include a visit to Uranus, and again in 1985 to include a flyby of Neptune. After completing the tour of the outer planets in 1989, the Voyager spacecraft began exploring interstellar space. The Voyager mission has been managed by NASA's Office of Space Science and the Jet Propulsion Laboratory.
Date 08/20/1977
NASA Center Kennedy Space Center
Seen here is a full-scale mo …
Description Seen here is a full-scale model of one of the twin Voyager spacecraft, which was sent to explore the giant outer planets in our solar system. Voyager 2 was launched August 20, 1977 followed by the launch of Voyager 1 sixteen days later. Both spacecraft visited Jupiter and Saturn with Voyager 2 continuing its journey to Uranus and Neptune. In spring 1990, Voyager 2 transmitted images looking back across the span of the entire solar system. Both Voyagers continue to explore interstellar space.
S-1 C & BW -62
Voyager 1 looked back at Sat …
12/4/80
Date 12/4/80
Description Voyager 1 looked back at Saturn on Nov. 16, 1980, four days after the spacecraft flew past the planet, to observe the appearance of Saturn and its rings from this unique perspective. A few of the spokelike ring features discovered by Voyager appear in the rings as bright patches in this image, taken at a distance of 5.3 million kilometers (3.3 million miles) from the planet. Saturn's shadow falls upon the rings, and the bright Saturn crescent is seen through all but the densest portion of the rings. From Saturn, Voyager 1 is on a trajectory taking the spacecraft out of the ecliptic plane, away from the Sun and eventually out of the solar system (by about 1990). Although its mission to Jupiter and Saturn is nearly over (the Saturn encounter ends Dec. 18, 1980), Voyager 1 will be tracked by the Deep Space Network as far as possible in an effort to determine where the influence of the Sun ends and interstellar space begins. Voyager 1's flight path through interstellar space is in the direction of the constellation Ophiuchus. Voyager 2 will reach Saturn on August 25, 1981, and is targeted to encounter Uranus in 1986 and possibly Neptune in 1989. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California. #####
Voyager 2 Launch
title Voyager 2 Launch
date 08.20.1977
description Voyager 2 was launched August 20, 1977, sixteen days before Voyager 1 aboard a Titan-Centaur rocket. Their different flight trajectories caused Voyager 2 to arrive at Jupiter four months later than Voyager 1, thus explaining their numbering. The initial mission plan for Voyager 2 specified visits only to Jupiter and Saturn. The plan was augmented in 1981 to include a visit to Uranus, and again in 1985 to include a flyby of Neptune. After completing the tour of the outer planets in 1989, the Voyager spacecraft began exploring interstellar space. The Voyager mission has been managed by NASA's Office of Space Science and the Jet Propulsion Laboratory. *Image Credit*: NASA
Solar System Montage of Voya …
Title Solar System Montage of Voyager Images
Full Description This montage of images taken by the Voyager spacecraft of the planets and four of Jupiter's moons is set against a false-color Rosette Nebula with Earth's moon in the foreground. Studying and mapping Jupiter, Saturn, Uranus, Neptune, and many of their moons, Voyager provided scientists with better images and data than they had ever had before or expected from the program. Although launched sixteen days after Voyager 2, Voyager 1's trajectory was a faster path, arriving at Jupiter in March 1979. Voyager 2 arrived about four months later in July 1979. Both spacecraft were then directed to Saturn with Voyager 1 arriving in November 1980 and Voyager 2 in August 1981. Voyager 2 was then diverted to the remaining gas giants, Uranus in January 1986 and Neptune in August 1989. Data collection continues by both Voyager 1 and 2 as the renamed Voyager Interstellar Mission searches for the edge of the solar wind influence (the heliopause) and exits the Solar System. A shortened list of the discoveries of Voyager 1 and 2 include:the discovery of the Uranian and Neptunian magnetospheres (magnetic environments caused by various types of planet cores), the discovery of twenty-two new satellites including three at Jupiter, three at Saturn, ten at Uranus, and six at Neptune, Io was found to have active volcanism (the only other Solar System body than Earth to be confirmed), Triton was found to have active geyser-like structures and an atmosphere, Auroral Zones (where gases become excited after being hit by solar particles) were discovered at Jupiter, Saturn, and Neptune, Jupiter was found to have rings, Neptune, originally thought to be too cold to support such atmospheric disturbances, had large-scale storms.
Date UNKNOWN
NASA Center Jet Propulsion Laboratory
First Picture of the Earth a …
Title First Picture of the Earth and Moon in a Single Frame
Full Description This picture of the Earth and Moon in a single frame, the first of its kind ever taken by a spacecraft, was recorded September 18, 1977, but NASAs Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Image Processing Lab at Jet Propulsion Laboratory (JPL). Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the prints. Voyager 1 was launched September 5, 1977 and Voyager 2 on August 20, 1977. JPL is responsible for the Voyager mission.
Date 09/18/1977
NASA Center Jet Propulsion Laboratory
Stereo Saturn
Title Stereo Saturn
Explanation Get out your red/blue glasses [ http://img.arc.nasa.gov/archive/desert96/redblue.html ] and launch [ http://antwrp.gsfc.nasa.gov/apod/ap971016.html ] yourself into this stereo [ http://cass.jsc.nasa.gov/research/stereo_atlas/SS3D.HTM ] picture of Saturn! The picture is actually composed from two images recorded weeks apart by the Voyager 2 spacecraft [ http://vraptor.jpl.nasa.gov/voyager/voyager_fs.html ] during its visit to [ http://nssdc.gsfc.nasa.gov/planetary/voyager.html ] the Saturnian System in August of 1981. Traveling at about 35,000 miles per hour, the spacecraft's changing viewpoint from one image to the next produced this exaggerated but pleasing stereo effect [ http://antwrp.gsfc.nasa.gov/apod/ap970404.html ]. Saturn is the second largest planet [ http://seds.lpl.arizona.edu/nineplanets/nineplanets/saturn.html ] in the Solar System, after Jupiter. Its spectacular ring system [ http://ringmaster.arc.nasa.gov/saturn/saturn.html ] is so wide that it would span the space between the Earth and Moon. Although they look solid here, Saturn's [ http://antwrp.gsfc.nasa.gov/apod/ap000129.html ] rings consist of individually orbiting bits of ice and rock ranging in size from grains of sand to barn-sized boulders.
Stereo Saturn
Title Stereo Saturn
Explanation Get out your red/blue glasses [ http://img.arc.nasa.gov/archive/desert96/redblue.html ] and launch [ http://antwrp.gsfc.nasa.gov/apod/ap981224.html ] yourself into this stereo [ http://cass.jsc.nasa.gov/research/stereo_atlas/SS3D.HTM ] picture of Saturn! The picture is actually composed from two images recorded weeks apart by the Voyager 2 spacecraft [ http://vraptor.jpl.nasa.gov/voyager/voyager_fs.html ] during its visit to the Saturnian System [ http://nssdc.gsfc.nasa.gov/planetary/voyager.html ] in August of 1981. Traveling at about 35,000 miles per hour, the spacecraft's changing viewpoint from one image to the next produced this exaggerated but pleasing stereo effect [ http://antwrp.gsfc.nasa.gov/apod/ap970404.html ]. Saturn is the second largest planet in the Solar System [ http://seds.lpl.arizona.edu/nineplanets/nineplanets/saturn.html ], after Jupiter. Its spectacular ring system [ http://ringmaster.arc.nasa.gov/saturn/saturn.html ] is so wide that it would span the space between the Earth and Moon. Although they look solid here, Saturn's Rings [ http://antwrp.gsfc.nasa.gov/apod/ap981105.html ] consist of individually orbiting bits of ice and rock ranging in size from grains of sand to barn-sized boulders.
Voyager Tour Montage
Title Voyager Tour Montage
Full Description This montage of images of the planets visited by Voyager 2 was prepared from an assemblage of images taken by the Voyager 2 spacecraft. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California.
Date 08/01/1989
NASA Center Jet Propulsion Laboratory
Voyager's Ocean Planet
title Voyager's Ocean Planet
date 09.18.1977
description This picture of the Earth and Moon in a single frame, the first of its kind ever taken by a spacecraft, was recorded September 18, 1977, but NASAs Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Image Processing Lab at Jet Propulsion Laboratory (JPL). Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the prints. Voyager 1 was launched September 5, 1977 and Voyager 2 on August 20, 1977. JPL is responsible for the Voyager mission. *Image Credit*: NASA
Jupiter System Montage
Title Jupiter System Montage
Full Description Jupiter and its four planet-size moons, called the Galilean satellites, were photographed in early March 1979 by Voyager 1 and assembled into this collage. They are not to scale but are in their relative positions. Startling new discoveries on the Galilean moons and the planet Jupiter made by Voyager l factored into a new mission design for Voyager 2. Reddish Io (upper left) is nearest Jupiter, then Europa (center), Ganymede and Callisto (lower right). Nine other much smaller satellites circle Jupiter, one inside Io's orbit and the other millions of miles from the planet. Not visible is Jupiter's faint ring of particles, seen for the first time by Voyager 1. The Voyager Project is managed for NASA's Office of Space Science by Jet Propulsion Laboratory, California Institute of Technology.
Date 06/22/1979
NASA Center Jet Propulsion Laboratory
Jupiter and the Galilean Sat …
title Jupiter and the Galilean Satellites
description Jupiter and its four planet-size moons, called the Galilean satellites, were photographed in early March by Voyager 1 and assembled into this collage. They are not to scale but are in their relative positions. Startling new discoveries on the Galilean moons and the planet Jupiter made by Voyager 1 have been factored into a new mission design for Voyager 2. Voyager 2 will fly past Jupiter on July 9. Reddish Io (upper left) is nearest Jupiter, then Europa (center), Ganymede and Callisto (lower right). Nine other much smaller satellites circle Jupiter, one inside Io's orbit and the other millions of miles from the planet. Not visible is Jupiter's faint ring of particles, seen for the first time by Voyager 1. The Voyager Project is managed for NASA's Office of Space Science by Jet Propulsion Laboratory, California Institute of Technology. *Image Credit*: NASA
Neptune and Tritron
Title Neptune and Tritron
Full Description This image was returned by the Voyager 2 spacecraft on July 3, 1989, when it was 76 million kilometers (47 million miles) from Neptune. The planet and its largest satellite, Triton, are captured in the field of view of Voyager's narrow-angle camera through violet, clear and orange filters. Triton appears in the lower right corner at about 5 o'clock relative to Neptune. Measurements from Voyager images show Triton to be between 1,400 and 1,800 kilometers (about 870 to 1,100 miles) in radius with a surface that is about as bright as freshly fallen snow. Because Triton is barely resolved in current narrow-angle images, it is too early to see features on its surface. Scientists believe Triton has at least a small atmosphere of methane and possibly other gases. During its closest approach to Triton on August 25, 1989, Voyager provided high-resolution views of the moon's icy surface and reveal whether Triton's atmosphere has clouds. JPL manages the Voyager Project for NASA's Office of Space Science and Applications, Washington, DC.
Date 07/27/1989
NASA Center Jet Propulsion Laboratory
Nereid
PIA00054
Neptune
Title Nereid
Original Caption Released with Image Nereid, the last satellite of Neptune to be discovered before Voyager's recent discoveries, was first seen by Gerard Kuiper in 1949. Until this Voyager 2 image was obtained, all that was known about Nereid was its orbital parameters and intrinsic brightness. This Voyager view of Nereid was obtained on Aug. 24, 1989 at a distance of 4.7 million kilometers (2.9 million miles). With a resolution of 43 kilometers (26.6 miles) per pixel, this image has sufficient detail to show the overall size and albedo. Nereid is about 170 kilometers (105 miles) across and reflects about 12 percent of the incident light. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Voyager 2-N76
This dramatic view of the cr …
8/29/89
Date 8/29/89
Description This dramatic view of the crescents of Neptune and Triton was acquired by Voyager 2 approximately 3 days, 6 and one-half hours after its closest approach to Neptune. The spacecraft is now plunging southward at an angle of 48 degrees to the plane of the ecliptic. This direction, combined with the current season of southern summer in the Neptune system, gives this picture its unique geometry. The spacecraft was at a distance of 4.86 million kilometers (3 million miles) from Neptune when these images were shuttered so the smallest detail discernible is approximately 90 kilometers (56 miles). Color was produced using images taken through the narrow-angle camera's clear, orange and green filters. Neptune does not appear as blue from this viewpoint because the forward scattering nature of its atmosphere is more important than its absorption of red light at this high phase angle (134 degrees).The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Voyager 2-N77
Voyager 2 obtained this high …
8/29/89
Date 8/29/89
Description Voyager 2 obtained this high-resolution color image of Neptune's large satellite Triton during its close flyby on Aug. 25, 1989. Approximately a dozen individual images were combined to produce this comprehensive view of the Neptune-facing hemisphere of Triton. Fine detail is provided by high-resolution, clear-filter images, with color information added from lower-resolution frames. The large south polar cap at the bottom of the image is highly reflective and slightly pink in color, it may consist of a slowly evaporating layer of nitrogen ice deposited during the previous winter. From the ragged edge of the polar cap northward the satellite's face is generally darker and redder in color. This coloring may be produced by the action of ultraviolet light and magnetospheric radiation upon methane in the atmosphere and surface. Running across this darker region, approximately parallel to the edge of the polar cap, is a band of brighter white material that is almost bluish in color. The underlying topography in this bright band is similar, however to that in the darker, redder regions surrounding it. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications. #####
Voyager 2
This picture of Neptune was …
4/2/90
Date 4/2/90
Description This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on the Voyager 2 narrow angle camera. The images were taken at a range of 4.4 million miles from the planet, 4 days and 20 hours before closest approach. The picture shows the Great Dark Spot and its companion bright smudge, on the west limb the fast moving bright feature called Scooter and the little dark spot are visible. These clouds were seen to persist for as long as Voyager's cameras could resolve them. North of these, a bright cloud band similar to the south polar streak may be seen. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Launch of Titan III-Centaur, …
Name of Image Launch of Titan III-Centaur, Voyager 1
Date of Image 1977-09-05
Full Description The Voyager 1 aboard the Titan III/Centaur lifted off on September 5, 1977, joining its sister spacecraft, the Voyager 2, on a mission to the outer planets.
Uranus
Title Uranus
Full Description This computer enhancement of a Voyager 2 image, emphasizes the high-level haze in Uranus' upper atmosphere. Clouds are obscured by the overlying atmosphere. JPL manages and controls the Voyager project for NASA's Office of Space Science, Washington, DC.
Date 01/01/1986
NASA Center Jet Propulsion Laboratory
Surface Changes on Io
PIA00713
Jupiter
Solid-State Imaging
Title Surface Changes on Io
Original Caption Released with Image Four views of an unnamed volcanic center (latitude 11, longitude 337) on Jupiter's moon Io showing changes seen on June 27th, 1996 by the Galileo spacecraft as compared to views seen by the Voyager spacecraft during the 1979 flybys. Clockwise from upper left is a Voyager 1 high resolution image, a Voyager 1 color image, a Galileo color image, and a Voyager 2 color image. North is to the top of the picture. This area has experienced many changes in appearance since Voyager images were acquired, including new dark and bright deposits. This region was a hot spot during Voyager 1. Images are 762 km wide. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo
Io
PIA01362
Jupiter
Imaging Science Subsystem - …
Title Io
Original Caption Released with Image Voyager 2 took this picture of Io on the evening of July 9, 1979, from a range of 1.2 million kilometers. On the limb of Io are two blue volcanic eruption plumes about 100 kilometers high. These two plumes were first seen by Voyager 1 in March, 1979, and are designated Plume 5 (upper) and Plume 6 (lower). They have apparently been erupting for a period of at least 4 months and probably longer. A total of six plumes have been seen by Voyager 2, all of which were first seen by Voyager 1. The largest plume viewed by Voyager 1 (Plume 1) is no longer erupting. Plume 4 was not viewed on the edge of the moon's disc by Voyager 2 and therefore it is not known whether or not it is still erupting. This picture is one of a series taken to monitor the eruptions over a 6 hour period.
Jupiter System Montage
PIA01481
Sol (our sun)
Title Jupiter System Montage
Original Caption Released with Image Jupiter and its four planet-size moons, called the Galilean satellites, were photographed in early March by Voyager 1 and assembled into this collage. They are not to scale but are in their relative positions. Startling new discoveries on the Galilean moons and the planet Jupiter made by Voyager 1 have been factored into a new mission design for Voyager 2. Voyager 2 will fly past Jupiter on July 9. Reddish Io (upper left) is nearest Jupiter, then Europa (center), Ganymede and Callisto (lower right). Nine other much smaller satellites circle Jupiter, one inside Io's orbit and the other millions of miles from the planet. Not visible is Jupiter's faint ring of particles, seen for the first time by Voyager 1. The Voyager Project is managed for NASA's Office of Space Science by Jet Propulsion Laboratory, California Institute of Technology.
Crescent Earth and Moon
PIA00013
Sol (our sun)
Title Crescent Earth and Moon
Original Caption Released with Image This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA's Office of Space Science.
Saturn's B-ring
PIA02274
Saturn
Imaging Science Subsystem - …
Title Saturn's B-ring
Original Caption Released with Image Prominent dark spokes are visible in the outer half of Saturn?s broad B-ring in this Voyager 2 photograph taken on Aug. 3, 1981 from a range of about 22 million kilometers (14 million miles). The features appear as filamentary markings about 12,000 kilometers (7,S00 miles) long, which rotate around the planet with the motion of particles in the rings. The nature of these features, discovered by Voyager 1, is not totally understood, but scientists believe the spokes may be caused by dust levitated above the ring plane by electric fields, Voyager 2 photography of the rings edge-on, scheduled for Aug. 25, 1981, will provide an opportunity to test that theory. Because the Sun is now illuminating the rings from a higher angle, Voyager 2's photographs reveal ring structure from a greater distance than that seen by Voyager 1 in its November 1980 encounter. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.
Crescent-shaped Earth and Mo …
PIA01967
Sol (our sun)
Imaging Science Subsystem - …
Title Crescent-shaped Earth and Moon
Original Caption Released with Image This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA.
Neptune Hurricanes
title Neptune Hurricanes
date 08.24.1989
description Voyager 2 sent back this stunning image of storms at work in Neptune's windy atmosphere in August 1989. This photograph of Neptune was reconstructed from two images taken by Voyager 2's narrow-angle camera, through the green and clear filters. The image shows three of the features that Voyager 2 photographed during its Neptune flyby. At the north (top) is the Great Dark Spot, accompanied by bright, white clouds that undergo rapid changes in appearance. To the south of the Great Dark Spot is the bright feature that Voyager scientists nicknamed "Scooter." Still farther south is the feature called "Dark Spot 2," which has a bright core. Each feature moves eastward at a different velocity, so it is only occasionally that they appear close to each other, such as at the time this picture was taken. Voyager 2 is the only spacecraft to visit Neptune. *Image Credit*: NASA
Uranus Ring System
title Uranus Ring System
description This dramatic Voyager 2 picture reveals a continuous distribution of small particles throughout the Uranus ring system. Voyager took this image while in the shadow of Uranus, at a distance of 236,000 kilometers (142,000 miles and a resolution of about 33 km (20 ml). This unique geometry -- the highest phase angle at which Voyager imaged the rings -- allows us to see lanes of fine dust particles not visible from other viewing angles. All the previously known rings are visible here, however, some of the brightest features in the image are bright dust lanes not previously seen. The combination of this unique geometry and a long, 96 second exposure allowed this spectacular observation, acquired through the clear filter of Voyager's wide-angle camera. The long exposure produced a noticeable, non-uniform smear as well as streaks due to trailed stars. The Voyager project is managed for NASA by the Jet Propulsion Laboratory. *Image Credit*: JPL
Io
PIA01989
Jupiter
Imaging Science Subsystem - …
Title Io
Original Caption Released with Image This Voyager 2 picture of Io was taken in ultraviolet light on the evening of July 4, 1979, at a range of 4.7 million kilometers (2.9 million miles). The bright spot on the right limb is one of the volcanic eruption plumes first photographed by Voyager 1. The plume is more than 200 kilometers (124 miles) high. The volcano apparently has been erupting since it was observed by Voyager 1 in March. This suggests that the volcanos on Io probably are in continuous eruption.
Artist's Concept of Voyager
PIA04495
Title Artist's Concept of Voyager
Original Caption Released with Image This artist's concept of the Voyager spacecraft with its antenna pointing to Earth. The identical Voyager spacecraft are three-axis stabilized systems that use celestial or gyro referenced attitude control to maintain pointing of the high-gain antennas toward Earth. The prime mission science payload consisted of 10 instruments (11 investigations including radio science). Only five investigator teams are still supported, though data are collected for two additional instruments.
Saturn's faint inner D-ring
PIA01388
Saturn
Imaging Science Subsystem - …
Title Saturn's faint inner D-ring
Original Caption Released with Image Voyager 2 took this picture of Saturn's faint inner D-ring Aug. 25 about 1 hour 48 minutes before the spacecraft's closest approach to Saturn. The range was 195,400 kilometers (121,300 miles) and phase angle was 166`. This view includes the sun's shadow across the ring. Voyager 1 saw this region in a similar view last fall, but this higher-resolution image shows many more ringlets and gaps. The D-ring is very tenuous and has an extremely small optical depth. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.
Exploring Saturn's Rings
Title Exploring Saturn's Rings
Explanation By watching a star flicker and fade as it passed behind Saturn's rings, NASA's Voyager 2 [ http://nssdc.gsfc.nasa.gov/planetary/voyager.html ] spacecraft was able explore the ring system in amazing detail. Data produced by Voyager's instruments as the star Delta Scorpii was occulted by some of the outer rings was used to reconstruct this image which shows details almost 1000 times smaller than normally possible with Voyager's cameras. For more information about the picture see the NASA, JPL press release [ http://nssdc.gsfc.nasa.gov/photo_gallery/caption/saturn_f_ring.txt ]. Tomorrow's picture: Crossing the Ring Plane
Voyager 2 Looks at Saturn's …
title Voyager 2 Looks at Saturn's Rings
date 08.17.1981
description Voyager 2 false-color image of Saturn's rings. Subtle color variations due to differences in surface composition of the particles making up the rings are enhanced in this image produced by combining ultraviolet, clear, and orange frames. The frame was taken from a distance of 8.9 million km on August 17, 9 days before closest approach, and measures about 68,000 km from top to bottom. (Voyager 2, P-23953) *Image Credit*: NASA
Voyager 2 Launch
title Voyager 2 Launch
date 08.20.1977
description Voyager 2 was launched on August 20, 1977, from the NASA Kennedy Space Center at Cape Canaveral in Florida, propelled into space on a Titan/Centaur rocket. JPL manages and controls the Voyager project for NASA's Office of Space Science. *Image Credit*: NASA
Launch of Titan III-Centaur, …
Name of Image Launch of Titan III-Centaur, Voyager 2
Date of Image 1977-08-20
Full Description The Voyager 2 aboard Titan III-Centaur launch vehicle lifted off on August 20, 1977. The Voyager 2 was a scientific satellite to study the Jupiter and the Saturn planetary systems including their satellites and Saturn's rings.
Neptune - partial rings
Title Neptune - partial rings
Description One of two new ring arcs, or partial rings, discovered today by NASA's Voyager 2 spacecraft, is faintly visible here just outside the orbit of the Neptunian moon 1989N4, also discovered by Voyager 2 earlier this month. The 155 second exposure taken by Voyager's narrow-angle camera shows the glare of an overexposed Neptune to the right of the moon and ring arc. The two bright streaks below the moon and ring arc are stars. The ring arc is approximately 50,000 kilometers (or 30,000 miles) long. (The second ring arc, not apparent here, is approximately 10,000 kilometers (6,000 miles) long and is associated with the moon 1989N3.) The ring arc, along with 1989N4, orbits about 62,000 kilometers (38,000 miles) from the planet's center, or about 37,000 kilometers (23,000 miles) from the planet's cloud tops. Astronomers have long suspected the existence of such an irregular ring system around Neptune. Data from repeated ground based observations hinted at the existence of irregular strands of partial rings orbiting Neptune. Voyager's photographs of the ring arcs are the first photographic evidence that such a ring system exists. Voyager scientists said the ring arcs may be comprised of debris associated with the nearby moons, or may be the remnants of moons that have been torn apart or ground down through collisions. Close-up studies of the ring arcs by Voyager 2 in coming days should help determine their composition. The Voyager mission is conducted by the Jet Propulsion Laboratory for NASA's Office of Space Science and Applications.
Date 08.11.1989
View of Saturn's rings
PIA01389
Saturn
Imaging Science Subsystem - …
Title View of Saturn's rings
Original Caption Released with Image This was one of the first pictures obtained once Voyager 2 resumed returning images Aug. 29 after its scan platform was commanded to view Saturn. Problems with the platform, on which Voyager's cameras and other instruments are mounted, had prevented the return of images for a few days. This view shows some detail and differences in the complex system of rings. The "reddening" of the B-ring on the unlit side also was seen in Voyager 1 images. Voyager 2 obtained this picture from a range 3.4 million kilometers (2.1 million miles) through the clear, green and violet filters. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.
Saturn's north temperate reg …
PIA01375
Sol (our sun)
Imaging Science Subsystem - …
Title Saturn's north temperate region
Original Caption Released with Image This comparison shows Saturn?s north temperate region as viewed Nov. 5, 1980, by Voyager 1 (left) and Aug. 21 by its sister craft, Voyager 2, from a range of 5 million kilometers (3.1 million miles). The large bright oval feature in the lower right of each frame measures about 2,500 km. (1,550 mi.) across. This feature, a gigantic storm system in the planet?s atmosphere, was first observed by Voyager 1 almost exactly one year ago. Thus, as on Jupiter, some storms in Saturn?s atmosphere are quite long-lived compared to their smaller terrestrial counterparts. By contrast, the pattern of convective disturbances to the north (upper right) undergoes rapid changes in a matter of even a few days. In some respects, these features resemble gigantic thunderstorms. The largest bright feature in the Voyager 1 photograph extends about 7,500 km. (4,650 mi.) from north to south. These giant storms lie within one of the strongest westward-flowing currents observed in the atmosphere, with wind speeds of about 20 meters-per-second (45 mph). The smallest visible features here are about 100 km. (62 mi.) across. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.
Saturn's A-ring
PIA01952
Saturn
Imaging Science Subsystem - …
Title Saturn's A-ring
Original Caption Released with Image Voyager 2 cameras acquired this photograph of Saturn's A-ring Aug. 26 from a distance of 227,800 kilometers (141,500 miles). This view of the ring's outer edge shows a small bright, clumpy ring within the Encke Gap (center of this image) that exhibits kinks reminiscent of those observed in the F-ring by Voyager 1 last fall but not by Voyager 2. Voyager 1 saw two similar clumpy rings in this region at much lower resolution. Also visible are a bright ringlet at the very outer edge of the A-ring and several bright wave patterns in the Encke region. The small bright patch on the inner edge of the Encke Gap near the ring is an artifact of processing. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.
Neptune - dark oval
PIA01990
Sol (our sun)
Imaging Science Subsystem - …
Title Neptune - dark oval
Original Caption Released with Image The large, dark oval spot in Neptune's atmosphere is just coming into view in this picture returned from the Voyager 2 spacecraft on June 30, 1989. The spacecraft was about 83 million kilometers (51.5 million miles) from Neptune. Voyager scientists are interested in the dark oval cloud system, a very large system similar to Jupiter's Great Red Spot. Contrast of the features in Neptune's atmosphere is similar to that obtained at Saturn at about this same distance and lighting, whereas the features are similar to those seen at Jupiter. The Jet Propulsion Laboratory manages the Voyager Project for NASA's Office of Space Science and Applications.
A view of Saturn's F-ring
PIA01382
Saturn
Imaging Science Subsystem - …
Title A view of Saturn's F-ring
Original Caption Released with Image Voyager 2 obtained this picture of Saturn's F-ring on Aug. 26 just before the spacecraft crossed the planet's ring plane. This edge-on view, taken from a range of 103,000 kilometers (64,000 miles), shows nearly 25` of the F-ring, with at least four distinct components visible. Voyager's photopolarimeter conducted a higher-resolution scan through another part of the ring, showing it to be composed of even more distinct ringlets than this frame would indicate. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.
Voyager 2 Launch
PIA01480
Sol (our sun)
Title Voyager 2 Launch
Original Caption Released with Image Voyager 2 was launched on August 20, 1977, from the NASA Kennedy Space Center at Cape Canaveral in Florida, propelled into space on a Titan/Centaur rocket. JPL manages and controls the Voyager project for NASA's Office of Space Science.
Saturn's rings - high resolu …
PIA02275
Saturn
Imaging Science Subsystem - …
Title Saturn's rings - high resolution
Original Caption Released with Image Voyager 2 obtained this high-resolution picture of Saturn's rings Aug. 22, when the spacecraft was 4 million kilometers (2.5 million miles) away. Evident here are the numerous "spoke" features, in the B-ring, their very sharp, narrow appearance suggests short formation times. Scientists think electromagnetic forces are responsible in some way for these features, but no detailed theory has been worked out. Pictures such as this and analyses of Voyager 2's spoke movies may reveal more clues about the origins of these complex structures. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.
Neptune Full Disk View
Title Neptune Full Disk View
Full Description This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on the Voyager 2 narrow angle camera. The images were taken at a range of 4.4 million miles from the planet, 4 days and 20 hours before closest approach. The picture shows the Great Dark Spot and its companion bright smudge, on the west limb the fast moving bright feature called Scooter and the little dark spot are visible. These clouds were seen to persist for as long as Voyager's cameras could resolve them. North of these, a bright cloud band similar to the south polar streak may be seen. Years later, when the Hubble telescope was focused on the planet, these atmospheric features had changed, indicating that Neptune's atmosphere is dynamic. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications, Washington, DC.
Date 04/02/1990
NASA Center Jet Propulsion Laboratory
Saturn's B-ring
Title Saturn's B-ring
Description Prominent dark spokes are visible in the outer half of Saturn's broad B-ring in this Voyager 2 photograph taken on Aug. 3, 1981 from a range of about 22 million kilometers (14 million miles). The features appear as filamentary markings about 12,000 kilometers (7,S00 miles) long, which rotate around the planet with the motion of particles in the rings. The nature of these features, discovered by Voyager 1, is not totally understood, but scientists believe the spokes may be caused by dust levitated above the ring plane by electric fields, Voyager 2 photography of the rings edge-on, scheduled for Aug. 25, 1981, will provide an opportunity to test that theory. Because the Sun is now illuminating the rings from a higher angle, Voyager 2's photographs reveal ring structure from a greater distance than that seen by Voyager 1 in its November 1980 encounter. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.
Date 08.13.1981
Miranda as seen by Voyager 2
Title Miranda as seen by Voyager 2
Full Description Flying by in early 1986, Voyager 2 captured this picture of Miranda, which enabled scientists to study this moon of Uranus in much greater detail than ever before. Discovered in 1948 by Gerard Peter Kuiper, Miranda is named for the daughter of the wily Prospero in Shakespeare's "The Tempest." It is the eleventh known satellite of Uranus and the innermost large moon of Uranus It was necessary that Voyager 2 passed by Miranda, not for scientific reasons, but simply for the gravity assist it needed to go on to Neptune. Due to the position of the entire Solar System, Miranda provided the energy to throw Voyager 2 to Neptune. Before Voyager, Miranda was largely ignored as it is not the largest moon and did not seem to have any other outstanding qualities. Fortunately, however, Voyager passed close enough to Miranda to provide scientists with fascinating photographs that captivated astronomers. About half ice and half rock, Miranda's surface has terraced layers that indicate both older and new surfaces coexisting. Since the mixing of ancient and recent surfaces is rare in planetary geology, scientists have postulated two explanations for the different ages of the numerous valleys and cliffs on Miranda. One theory is that Miranda could have shattered as many as five times and was then reassembled. Another hypothesis is that partly melted ice upwells forced new surfaces to emerge.
Date 01/25/1986
NASA Center Jet Propulsion Laboratory
Closeup of an Io Volcano
Title Closeup of an Io Volcano
Explanation In 1979, one of NASA's Voyager [ http://nssdc.gsfc.nasa.gov/planetary/voyager.html ] spacecraft made a spectacular and unexpected discovery. Io, [ http://antwrp.gsfc.nasa.gov/apod/ap950803.html ] the innermost Galilean moon of Jupiter, was covered with volcanoes and some of them were erupting! In all, Voyager 1 observed nine volcanic eruptions during its encounter with the moon. When Voyager 2 flew past four months later it was able to confirm that at least six of them were still erupting. This Voyager image of Ra Patera, a large shield volcano, shows colorful flows up to about 200 miles long emanating from the dark central volcanic vent. For more information about volcanism on Io, see Calvin J. Hamilton's Io page [ http://www.c3.lanl.gov/~cjhamil/SolarSystem/io.html ] Tomorrow's picture: Geysers on Triton
Saturn's Moon Tethys
Title Saturn's Moon Tethys
Explanation Tethys [ http://www.c3.lanl.gov/~cjhamil/SolarSystem/tethys.html ] is one of the larger and closer moons of Saturn [ http://antwrp.gsfc.nasa.gov/apod/ap951018.html ]. It was visited by both Voyager spacecraft - Voyager 1 in November 1980 and by Voyager 2 in August 1981. Tethys [ http://seds.lpl.arizona.edu/nineplanets/nineplanets/tethys.html ] is now known to be composed almost completely of water ice. Tethys shows a large impact crater that nearly circles the planet. That the impact that caused this crater did not disrupt the moon is taken as evidence that Tethys was not completely frozen in its past. Tethys has two moons named Telesto [ http://seds.lpl.arizona.edu/nineplanets/nineplanets/tethys.html#telesto ] and Calypso [ http://seds.lpl.arizona.edu/nineplanets/nineplanets/tethys.html#calypso ] that orbit just ahead of it and behind it. Tethys was originally discovered in 1684 by Giovanni Cassini.
Southern Neptune
Title Southern Neptune
Explanation Neptune [ http://seds.lpl.arizona.edu/nineplanets/nineplanets/neptune.html ], the Solar System's outermost gas giant planet, is 30 times farther from the Sun than Earth. Twelve years after a 1977 launch [ http://nssdc.gsfc.nasa.gov/planetary/voyager.html ], Voyager 2 flew by Neptune and found surprising activity on a planet [ http://antwrp.gsfc.nasa.gov/apod/ap961028.html ] that receives only 3 percent as much sunlight as Jupiter [ http://antwrp.gsfc.nasa.gov/apod/ap970310.html ]. In its brief but tantalizing close-up glimpse of this dim and distant world [ http://vraptor.jpl.nasa.gov/voyager/vgrnep_fs.html ], the robot spacecraft recorded pulses of radio emission, zonal cloud bands, and large scale storm systems with up to 1500 mile per hour winds - the strongest measured on any planet. This mosaic of 5 Voyager images [ http://nssdc.gsfc.nasa.gov/imgcat/html/object_page/vg2_p34628.html ] shows Neptune's Southern Hemisphere. Cloud bands and the Earth-sized, late "Great Dark Spot" [ http://antwrp.gsfc.nasa.gov/apod/ap960508.html ] with trailing white clouds located at about 22 degrees southern latitude are clearly visible. The distance from the Great Dark Spot feature to Neptune's South Pole [ http://antwrp.gsfc.nasa.gov/apod/ap951222.html ] (image center) is about 17,000 miles.
Montage of Saturnian system …
Name of Image Montage of Saturnian system by Voyager 1 spacecraft
Date of Image 1980-12-17
Full Description Voyager 1 passed the Saturnian system in November 1980, nine months later Voyager 2 passed through this same system. The ensuing scientific discoveries were unprecedented with regards to the rings around Saturn and its satellite's chemical makeup. Pictured are: Saturn (shown with rings), Dione (forefront), Tethys and Mimas (lower right), Enceladus and Rhea (upper left) and Titan in distant orbit (upper right).
1 2 3 412 13
1-50 of 606