|
Search Results: All Fields similar to 'Voyager' and What equal to 'Saturn'
|
Printer Friendly |
OUTWARD BOUND VOYAGER--A Tit
Description |
OUTWARD BOUND VOYAGER--A Titan-Centaur launch vehicle hurls Voyager 1 from Cape Canaveral toward its rendezvous with Jupiter and Saturn. The launch took place at 5:56 a.m. (PDT) September 5, 1977. Voyager 1 followed Voyager 2 away from Earth, but by the time they reach Jupiter it will be four months ahead of Voyager 2. Voyager 1 will reach Saturn nine months ahead of Voyager 2. The Voyager project is managed by Caltech's Jet Propulsion Laboratory for NASA's Office of Space Science. |
|
Voyager 2 Launch
Title |
Voyager 2 Launch |
Full Description |
Voyager 2 was launched August 20, 1977, sixteen days before Voyager 1 aboard a Titan-Centaur rocket. Their different flight trajectories caused Voyager 2 to arrive at Jupiter four months later than Voyager 1, thus explaining their numbering. The initial mission plan for Voyager 2 specified visits only to Jupiter and Saturn. The plan was augmented in 1981 to include a visit to Uranus, and again in 1985 to include a flyby of Neptune. After completing the tour of the outer planets in 1989, the Voyager spacecraft began exploring interstellar space. The Voyager mission has been managed by NASA's Office of Space Science and the Jet Propulsion Laboratory. |
Date |
08/20/1977 |
NASA Center |
Kennedy Space Center |
|
Seen here is a full-scale mo
Description |
Seen here is a full-scale model of one of the twin Voyager spacecraft, which was sent to explore the giant outer planets in our solar system. Voyager 2 was launched August 20, 1977 followed by the launch of Voyager 1 sixteen days later. Both spacecraft visited Jupiter and Saturn with Voyager 2 continuing its journey to Uranus and Neptune. In spring 1990, Voyager 2 transmitted images looking back across the span of the entire solar system. Both Voyagers continue to explore interstellar space. |
|
S-1 C & BW -62
Voyager 1 looked back at Sat
12/4/80
Date |
12/4/80 |
Description |
Voyager 1 looked back at Saturn on Nov. 16, 1980, four days after the spacecraft flew past the planet, to observe the appearance of Saturn and its rings from this unique perspective. A few of the spokelike ring features discovered by Voyager appear in the rings as bright patches in this image, taken at a distance of 5.3 million kilometers (3.3 million miles) from the planet. Saturn's shadow falls upon the rings, and the bright Saturn crescent is seen through all but the densest portion of the rings. From Saturn, Voyager 1 is on a trajectory taking the spacecraft out of the ecliptic plane, away from the Sun and eventually out of the solar system (by about 1990). Although its mission to Jupiter and Saturn is nearly over (the Saturn encounter ends Dec. 18, 1980), Voyager 1 will be tracked by the Deep Space Network as far as possible in an effort to determine where the influence of the Sun ends and interstellar space begins. Voyager 1's flight path through interstellar space is in the direction of the constellation Ophiuchus. Voyager 2 will reach Saturn on August 25, 1981, and is targeted to encounter Uranus in 1986 and possibly Neptune in 1989. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California. ##### |
|
Voyager 2 Launch
title |
Voyager 2 Launch |
date |
08.20.1977 |
description |
Voyager 2 was launched August 20, 1977, sixteen days before Voyager 1 aboard a Titan-Centaur rocket. Their different flight trajectories caused Voyager 2 to arrive at Jupiter four months later than Voyager 1, thus explaining their numbering. The initial mission plan for Voyager 2 specified visits only to Jupiter and Saturn. The plan was augmented in 1981 to include a visit to Uranus, and again in 1985 to include a flyby of Neptune. After completing the tour of the outer planets in 1989, the Voyager spacecraft began exploring interstellar space. The Voyager mission has been managed by NASA's Office of Space Science and the Jet Propulsion Laboratory. *Image Credit*: NASA |
|
Solar System Montage of Voya
Title |
Solar System Montage of Voyager Images |
Full Description |
This montage of images taken by the Voyager spacecraft of the planets and four of Jupiter's moons is set against a false-color Rosette Nebula with Earth's moon in the foreground. Studying and mapping Jupiter, Saturn, Uranus, Neptune, and many of their moons, Voyager provided scientists with better images and data than they had ever had before or expected from the program. Although launched sixteen days after Voyager 2, Voyager 1's trajectory was a faster path, arriving at Jupiter in March 1979. Voyager 2 arrived about four months later in July 1979. Both spacecraft were then directed to Saturn with Voyager 1 arriving in November 1980 and Voyager 2 in August 1981. Voyager 2 was then diverted to the remaining gas giants, Uranus in January 1986 and Neptune in August 1989. Data collection continues by both Voyager 1 and 2 as the renamed Voyager Interstellar Mission searches for the edge of the solar wind influence (the heliopause) and exits the Solar System. A shortened list of the discoveries of Voyager 1 and 2 include:the discovery of the Uranian and Neptunian magnetospheres (magnetic environments caused by various types of planet cores), the discovery of twenty-two new satellites including three at Jupiter, three at Saturn, ten at Uranus, and six at Neptune, Io was found to have active volcanism (the only other Solar System body than Earth to be confirmed), Triton was found to have active geyser-like structures and an atmosphere, Auroral Zones (where gases become excited after being hit by solar particles) were discovered at Jupiter, Saturn, and Neptune, Jupiter was found to have rings, Neptune, originally thought to be too cold to support such atmospheric disturbances, had large-scale storms. |
Date |
UNKNOWN |
NASA Center |
Jet Propulsion Laboratory |
|
Voyager Tour Montage
Title |
Voyager Tour Montage |
Full Description |
This montage of images of the planets visited by Voyager 2 was prepared from an assemblage of images taken by the Voyager 2 spacecraft. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California. |
Date |
08/01/1989 |
NASA Center |
Jet Propulsion Laboratory |
|
Voyager Redux
Description |
Voyager Redux |
Full Description |
During Cassini's Dec. 26 flyby of Titan, the spacecraft will be in the same region that NASA's Voyager 1 flew by in 1980. Cassini's path through the tail of Titan's magnetic field will provide scientists new data to compare with what Voyager found 25 years ago. + View Flyby Page |
Date |
December 21, 2005 |
|
Titan's thick haze layer
PIA02238
Saturn
Imaging Science Subsystem -
Title |
Titan's thick haze layer |
Original Caption Released with Image |
Titan's thick haze layer is shown in this enhanced Voyager 1 image taken Nov. 12, 1980 at a distance of 435,000 kilometers (270,000 miles). Voyager images of Saturn's largest moon show Titan completely enveloped by haze that merges with a darker "hood" or cloud layer over the north pole. Such a mantle is not present at the south pole. At Voyager's closest approach to Titan on Nov. 11, 1980, spacecraft instruments found that the moon has a substantial atmosphere, far denser than that of Mars and possibly denser than Earth's. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Voyager Tour Montage
PIA01483
Sol (our sun)
Title |
Voyager Tour Montage |
Original Caption Released with Image |
This montage of images of the planets visited by Voyager 2was prepared from an assemblage of images taken by the 2 Voyager spacecraft. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California. |
|
Crescent Earth and Moon
PIA00013
Sol (our sun)
Title |
Crescent Earth and Moon |
Original Caption Released with Image |
This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA's Office of Space Science. |
|
Saturn's B-ring
PIA02274
Saturn
Imaging Science Subsystem -
Title |
Saturn's B-ring |
Original Caption Released with Image |
Prominent dark spokes are visible in the outer half of Saturn?s broad B-ring in this Voyager 2 photograph taken on Aug. 3, 1981 from a range of about 22 million kilometers (14 million miles). The features appear as filamentary markings about 12,000 kilometers (7,S00 miles) long, which rotate around the planet with the motion of particles in the rings. The nature of these features, discovered by Voyager 1, is not totally understood, but scientists believe the spokes may be caused by dust levitated above the ring plane by electric fields, Voyager 2 photography of the rings edge-on, scheduled for Aug. 25, 1981, will provide an opportunity to test that theory. Because the Sun is now illuminating the rings from a higher angle, Voyager 2's photographs reveal ring structure from a greater distance than that seen by Voyager 1 in its November 1980 encounter. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Crescent-shaped Earth and Mo
PIA01967
Sol (our sun)
Imaging Science Subsystem -
Title |
Crescent-shaped Earth and Moon |
Original Caption Released with Image |
This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA. |
|
Saturn's Shadow
title |
Saturn's Shadow |
date |
11.16.1980 |
description |
Voyager 1 looked back at Saturn on Nov. 16, 1980, four days after the spacecraft flew past the planet, to observe the appearance of Saturn and its rings from this unique perspective. A few of the spokelike ring features discovered by Voyager appear in the rings as bright patches in this image, taken at a distance of 5.3 million kilometers (3.3 million miles) from the planet. Saturn's shadow falls upon the rings and the bright Saturn crescent is seen through all but the densest portion of the rings. From Saturn, Voyager 1 is on a trajectory taking the spacecraft out of the ecliptic plane, away from the Sun and eventually out of the solar system (by about 1990). Although its mission to Jupiter and Saturn is nearly over (the Saturn encounter ends Dec. 18, 1980), Voyager 1 will be tracked by the Deep Space Network as far as possible in an effort to determine where the influence of the Sun ends and interstellar space begins. Voyager 1's flight path through interstellar space is in the direction of the constellation Ophiuchus. *Image Credit*: NASA |
|
Saturn's faint inner D-ring
PIA01388
Saturn
Imaging Science Subsystem -
Title |
Saturn's faint inner D-ring |
Original Caption Released with Image |
Voyager 2 took this picture of Saturn's faint inner D-ring Aug. 25 about 1 hour 48 minutes before the spacecraft's closest approach to Saturn. The range was 195,400 kilometers (121,300 miles) and phase angle was 166`. This view includes the sun's shadow across the ring. Voyager 1 saw this region in a similar view last fall, but this higher-resolution image shows many more ringlets and gaps. The D-ring is very tenuous and has an extremely small optical depth. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Voyager 2 Looks at Saturn's
title |
Voyager 2 Looks at Saturn's Rings |
date |
08.17.1981 |
description |
Voyager 2 false-color image of Saturn's rings. Subtle color variations due to differences in surface composition of the particles making up the rings are enhanced in this image produced by combining ultraviolet, clear, and orange frames. The frame was taken from a distance of 8.9 million km on August 17, 9 days before closest approach, and measures about 68,000 km from top to bottom. (Voyager 2, P-23953) *Image Credit*: NASA |
|
Launch of Titan III-Centaur,
Name of Image |
Launch of Titan III-Centaur, Voyager 2 |
Date of Image |
1977-08-20 |
Full Description |
The Voyager 2 aboard Titan III-Centaur launch vehicle lifted off on August 20, 1977. The Voyager 2 was a scientific satellite to study the Jupiter and the Saturn planetary systems including their satellites and Saturn's rings. |
|
S-1 C/BW -59
This montage of images of th
11/17/80
Date |
11/17/80 |
Description |
This montage of images of the Saturnian system was prepared from an assemblage of images taken by the Voyager 1 spacecraft during its Saturn encounter in November 1980. This artist's view shows Dione in the forefront, Saturn rising behind, Tethys and Mimas fading in the distance to the right, Enceladus and Rhea off Saturn's rings to the left, and Titan in its distant orbit at the top. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California. |
|
View of Saturn's rings
PIA01389
Saturn
Imaging Science Subsystem -
Title |
View of Saturn's rings |
Original Caption Released with Image |
This was one of the first pictures obtained once Voyager 2 resumed returning images Aug. 29 after its scan platform was commanded to view Saturn. Problems with the platform, on which Voyager's cameras and other instruments are mounted, had prevented the return of images for a few days. This view shows some detail and differences in the complex system of rings. The "reddening" of the B-ring on the unlit side also was seen in Voyager 1 images. Voyager 2 obtained this picture from a range 3.4 million kilometers (2.1 million miles) through the clear, green and violet filters. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Saturn's north temperate reg
PIA01375
Sol (our sun)
Imaging Science Subsystem -
Title |
Saturn's north temperate region |
Original Caption Released with Image |
This comparison shows Saturn?s north temperate region as viewed Nov. 5, 1980, by Voyager 1 (left) and Aug. 21 by its sister craft, Voyager 2, from a range of 5 million kilometers (3.1 million miles). The large bright oval feature in the lower right of each frame measures about 2,500 km. (1,550 mi.) across. This feature, a gigantic storm system in the planet?s atmosphere, was first observed by Voyager 1 almost exactly one year ago. Thus, as on Jupiter, some storms in Saturn?s atmosphere are quite long-lived compared to their smaller terrestrial counterparts. By contrast, the pattern of convective disturbances to the north (upper right) undergoes rapid changes in a matter of even a few days. In some respects, these features resemble gigantic thunderstorms. The largest bright feature in the Voyager 1 photograph extends about 7,500 km. (4,650 mi.) from north to south. These giant storms lie within one of the strongest westward-flowing currents observed in the atmosphere, with wind speeds of about 20 meters-per-second (45 mph). The smallest visible features here are about 100 km. (62 mi.) across. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Saturn's A-ring
PIA01952
Saturn
Imaging Science Subsystem -
Title |
Saturn's A-ring |
Original Caption Released with Image |
Voyager 2 cameras acquired this photograph of Saturn's A-ring Aug. 26 from a distance of 227,800 kilometers (141,500 miles). This view of the ring's outer edge shows a small bright, clumpy ring within the Encke Gap (center of this image) that exhibits kinks reminiscent of those observed in the F-ring by Voyager 1 last fall but not by Voyager 2. Voyager 1 saw two similar clumpy rings in this region at much lower resolution. Also visible are a bright ringlet at the very outer edge of the A-ring and several bright wave patterns in the Encke region. The small bright patch on the inner edge of the Encke Gap near the ring is an artifact of processing. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Neptune - dark oval
PIA01990
Sol (our sun)
Imaging Science Subsystem -
Title |
Neptune - dark oval |
Original Caption Released with Image |
The large, dark oval spot in Neptune's atmosphere is just coming into view in this picture returned from the Voyager 2 spacecraft on June 30, 1989. The spacecraft was about 83 million kilometers (51.5 million miles) from Neptune. Voyager scientists are interested in the dark oval cloud system, a very large system similar to Jupiter's Great Red Spot. Contrast of the features in Neptune's atmosphere is similar to that obtained at Saturn at about this same distance and lighting, whereas the features are similar to those seen at Jupiter. The Jet Propulsion Laboratory manages the Voyager Project for NASA's Office of Space Science and Applications. |
|
A view of Saturn's F-ring
PIA01382
Saturn
Imaging Science Subsystem -
Title |
A view of Saturn's F-ring |
Original Caption Released with Image |
Voyager 2 obtained this picture of Saturn's F-ring on Aug. 26 just before the spacecraft crossed the planet's ring plane. This edge-on view, taken from a range of 103,000 kilometers (64,000 miles), shows nearly 25` of the F-ring, with at least four distinct components visible. Voyager's photopolarimeter conducted a higher-resolution scan through another part of the ring, showing it to be composed of even more distinct ringlets than this frame would indicate. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Saturn's rings - high resolu
PIA02275
Saturn
Imaging Science Subsystem -
Title |
Saturn's rings - high resolution |
Original Caption Released with Image |
Voyager 2 obtained this high-resolution picture of Saturn's rings Aug. 22, when the spacecraft was 4 million kilometers (2.5 million miles) away. Evident here are the numerous "spoke" features, in the B-ring, their very sharp, narrow appearance suggests short formation times. Scientists think electromagnetic forces are responsible in some way for these features, but no detailed theory has been worked out. Pictures such as this and analyses of Voyager 2's spoke movies may reveal more clues about the origins of these complex structures. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Saturn's B-ring
Title |
Saturn's B-ring |
Description |
Prominent dark spokes are visible in the outer half of Saturn's broad B-ring in this Voyager 2 photograph taken on Aug. 3, 1981 from a range of about 22 million kilometers (14 million miles). The features appear as filamentary markings about 12,000 kilometers (7,S00 miles) long, which rotate around the planet with the motion of particles in the rings. The nature of these features, discovered by Voyager 1, is not totally understood, but scientists believe the spokes may be caused by dust levitated above the ring plane by electric fields, Voyager 2 photography of the rings edge-on, scheduled for Aug. 25, 1981, will provide an opportunity to test that theory. Because the Sun is now illuminating the rings from a higher angle, Voyager 2's photographs reveal ring structure from a greater distance than that seen by Voyager 1 in its November 1980 encounter. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
Date |
08.13.1981 |
|
Montage of Saturnian system
Name of Image |
Montage of Saturnian system by Voyager 1 spacecraft |
Date of Image |
1980-12-17 |
Full Description |
Voyager 1 passed the Saturnian system in November 1980, nine months later Voyager 2 passed through this same system. The ensuing scientific discoveries were unprecedented with regards to the rings around Saturn and its satellite's chemical makeup. Pictured are: Saturn (shown with rings), Dione (forefront), Tethys and Mimas (lower right), Enceladus and Rhea (upper left) and Titan in distant orbit (upper right). |
|
Description |
Here on the Gallery page you can find the very latest images, videos and products from the Cassini-Huygens mission to Saturn, including the spectacular launch, spacecraft assembly and the exciting trip to Saturn. |
Full Description |
This enhanced-color image was created by combining three images taken through ultraviolet, violet and green filters on July 12, 1981. Several changes were apparent in Saturn's atmosphere since Voyager 1's November 1980 encounter, and the planet's rings had brightened considerably due to the higher sun angle. Voyager 2 was 43 million kilometers (27 million miles) from Saturn when it took this photograph. (P-23880) |
|
Titan's thick haze layer
Title |
Titan's thick haze layer |
Description |
Titan's thick haze layer is shown in this enhanced Voyager 1 image taken Nov. 12, 1980 at a distance of 435,000 kilometers (270,000 miles). Voyager images of Saturn's largest moon show Titan completely enveloped by haze that merges with a darker "hood" or cloud layer over the north pole. Such a mantle is not present at the south pole. At Voyager's closest approach to Titan on Nov. 11, 1980, spacecraft instruments found that the moon has a substantial atmosphere, far denser than that of Mars and possibly denser than Earth's. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
Date |
11.14.1980 |
|
Uranus - Final Image
PIA00143
Sol (our sun)
Imaging Science Subsystem -
Title |
Uranus - Final Image |
Original Caption Released with Image |
This view of Uranus was recorded by Voyager 2 on Jan 25, 1986, as the spacecraft left the planet behind and set forth on the cruise to Neptune Voyager was 1 million kilometers (about 600,000 miles) from Uranus when it acquired this wide-angle view. The picture -- a color composite of blue, green and orange frames -- has a resolution of 140 km (90 mi). The thin crescent of Uranus is seen here at an angle of 153 degrees between the spacecraft, the planet and the Sun. Even at this extreme angle, Uranus retains the pale blue-green color seen by ground-based astronomers and recorded by Voyager during its historic encounter. This color results from the presence of methane in Uranus' atmosphere, the gas absorbs red wavelengths of light, leaving the predominant hue seen here. The tendency for the crescent to become white at the extreme edge is caused by the presence of a high-altitude haze Voyager 2 -- having encountered Jupiter in 1979, Saturn in 1981 and Uranus in 1986 -- will proceed on its journey to Neptune. Closest approach is scheduled for Aug 24, 1989. The Voyager project is managed for NASA by the Jet Propulsion Laboratory. |
|
Voyager Spacecraft During Vi
Title |
Voyager Spacecraft During Vibration Testing |
Full Description |
Two Voyager spacecraft were launched in 1977 to explore the outer planets and some of their satellites. A prototype Voyager spacecraft is shown at NASA's Jet Propulsion Laboratory in Pasadena, California, as it successfully passed vibration tests which simulated the expected launch environment. The large parabolic antenna at the top is 3.7 meters in diameter and was used at both S-band and X-band radio frequencies for communicating with Earth over the great distances from the outer planets. The spacecraft received electrical power from three nuclear power sources (lower left). The shiny cylinder on the left side under the antenna contained a folded boom, which extended after launch to hold a magnetometer instrument thirteen meters away from the body of the spacecraft. The truss-like structure on the right side is the stowed instrument boom which supported three science instruments and a scan platform. The scan platform allowed the accurate pointing of two cameras and three other science instruments at Jupiter, Saturn, the rings of Saturn, Jupiter's moons, Saturn's moons, Uranus, moons of Uranus, and Neptune. |
Date |
03/25/1977 |
NASA Center |
Jet Propulsion Laboratory |
|
Photograph of Saturns' satel
PIA01397
Saturn
Imaging Science Subsystem -
Title |
Photograph of Saturns' satellite Tethys |
Original Caption Released with Image |
This Voyager 2 photograph of Tethys shows objects about 5 kilometers (3 miles) in size and is one of the best images of the Saturnian satellite returned by the spacecraft or its predecessor, Voyager 1. Voyager 2 obtained this picture Aug. 26 from a range of 282,000 kilometers (175,000 miles). It has been specially processed by computer to bring out fine detail on the surface. A boundary between heavily cratered regions (top right) and more lightly cratered areas (bottom right) is very similar to boundaries on the moons Dione and Rhea, indicating a period of internal activity early in Tethys' history that partially resurfaced the older terrain. The large crater in the upper right lies almost on the huge trench system that girdles nearly three-fourths of the circumference of the satellite. The trench itself is seen in this image as a linear set of markings to the lower left of the crater. The trench, several kilometers deep, is indicative of a cold, stiff ice crust at the time of its formation. Formation of this trench system could have resulted from the expansion of Tethys as its warm interior froze. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Saturn - Tethys from 594,000
PIA01392
Saturn
Imaging Science Subsystem -
Title |
Saturn - Tethys from 594,000 kilometers (368,000 miles) away. |
Original Caption Released with Image |
Voyager 2 obtained this image of Tethys on Aug. 25, when the spacecraft was 594,000 kilometers (368,000 miles) from this satellite of Saturn. This photograph was compiled from images taken through the violet, clear and green filters of Voyager's narrow-angle camera. Tethys shows two distinct types of terrain--bright, densely cratered regions, and relatively dark, lightly cratered planes that extend in a broad belt across the satellite. The densely cratered terrain is believed to be part of the ancient crust of the satellite, the lightly cratered planes are thought to have been formed later by internal processes. Also clearly seen is a trough that runs parallel to the terminator (the day-night boundary, seen at right). This trough is an extension of the huge canyon system Voyager 1 saw last fall. This system extends nearly two-thirds the distance around Tethys. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Tethys
PIA02276
Saturn
Imaging Science Subsystem -
Title |
Tethys |
Original Caption Released with Image |
The Saturn satellite Tethys was viewed by Voyager 2 on Aug. 25 from a distance of 1 million kilometers (620,000 mi.). Evident on the surface of this icy moon is an enormous impact crater almost 400 km. (250 mi.) in diameter and about 15 km. (10 mi.) deep. Tethys itself is only 1,050 km. (650 mi.) in diameter. The crater contains a central peak about as high as the crater is deep, it is the result of rebound after the impact. Tethys resembles its sister satellite Mimas, seen closeup by Voyager 1 last fall. That body has a crater 130 km. (80 mi.) in diameter. The Tethys crater, which is so large that Mimas would fit inside, is on the opposite side of the great rift valley observed by Voyager 1. Many other, smaller craters pock-mark the surface here. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Saturn's ring region
PIA01964
Saturn
Imaging Science Subsystem -
Title |
Saturn's ring region |
Original Caption Released with Image |
This long exposure of the ring region about 150,000 to 200,000 kilometers (90,000 to 120,000 miles) from the center of Saturn captured the very faint G-ring, seen at left. The ring was discovered by Voyager 1 last fall at a similar phase angle. Voyager 2 was about 305,000 km. (189,000 mi.) away when it took this image Aug. 26. The small rectangular dots forming a regular pattern are reseau (reference) marks on the Voyager vidicon camera. The high-resolution detail in the A-ring has been washed out by the very long exposure needed to bring out the very tenuous G-ring. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Saturn's shadow upon the rin
PIA02285
Saturn
Imaging Science Subsystem -
Title |
Saturn's shadow upon the rings |
Original Caption Released with Image |
Voyager 2 returned this wide-angle, clear-filtered image of the shadow of Saturn upon the rings just after engineers at the Jet Propulsion Laboratory successfully commanded the camera platform to point to the planet. Problems with the platform had prevented the spacecraft from returning photographs the past few days. This first picture after the repair was obtained the evening of Aug. 28, when Voyager 2 was 3.2 million kilometers (2 million miles) from the planet and racing away at more than 26,000 mph. Saturn's nightside can be seen at upper left, with the shadow cast by the planet falling across the rings in the center of this image. The white lines, or "noise," across the photograph are the result of temporary ground communications troubles between the Australian Deep Space Network tracking station and Voyager mission control in Pasadena. The picture was received in Australia in perfect condition, the noise will be removed in subsequent processing. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Saturn's Atmospheric Changes
PIA03152
Sol (our sun)
Imaging Science Subsystem -
Title |
Saturn's Atmospheric Changes |
Original Caption Released with Image |
Saturn's rings are bright and its northern hemisphere defined by bright features as NASA's Voyager 2 approaches Saturn, which it will encounter on Aug. 25, 1981. Three images, taken through ultraviolet, violet and green filters on July 12, 1981, were combined to make this photograph. Several changes are apparent in Saturn's atmosphere since Voyager 1's November 1980 encounter, and the planet's rings have brightened considerably due to the higher sun angle. Voyager 2 was 43 million kilometers (27 million miles) from Saturn when it took this photograph. The Voyager project is managed by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
Saturn's Ring Shadow, Then a
Description |
Here on the Gallery page you can find the very latest images, videos and products from the Cassini-Huygens mission to Saturn, including the spectacular launch, spacecraft assembly and the exciting trip to Saturn. |
Full Description |
The image on the left was taken on Nov. 1, 1980, by NASA's Voyager spacecraft from a distance of 5.3 million kilometers (3.3 million miles). It shows a very strong narrow shadow cast on the equatorial region of Saturn's atmosphere by the rings. During the Voyager encounters, the Sun was close to the plane of the rings so that the ring shadow was very deep and localized to low latitudes. Radio signals detected by Voyager were interpreted as lightning coming from a persistent, extended storm system at low latitudes. It is possible that the ring shadow was partly responsible for generating this storm by promoting strong convection at the boundary of the colder shadowed atmosphere and the adjoining sunlit atmosphere. This image was previously released on June 19, 1999. For original caption see PIA00335. The image on the right was acquired by the Cassini spacecraft on May 10, 2004, from a distance of 27.2 million kilometers (16.9 million miles) and shows the complex set of ring shadows cast over a large region of Saturn's northern hemisphere. This shadow pattern is due to the Sun being well below the ring plane during Cassini's approach to Saturn. This image was previously release on May 25, 2004. For original caption see PIA05394. Unlike the situation when NASA's Voyager spacecraft flew by Saturn, these ring shadows are not as deep and are not localized at a very narrow range of latitudes. Should these shadows drive convection in Saturn's atmosphere, the location would likely be very much different than the near-equatorial shadow observed by the Voyagers in the early 1980s. It is possible that this very different ring shadow geometry is one reason for different morphologies of thunderstorms observed by Cassini and Voyager. Voyager observed lightning apparently from one persistent, low-latitude storm system, whereas Cassini observes lightning from storms which seem to come and go on time scales of a day or so, and perhaps from more than one storm system at a time. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The radio and plasma wave science team is based at the University of Iowa, Iowa City. For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the instrument team's home page, http://www-pw.physics.uiowa.edu/plasma-wave/cassini/home.html . Image Credit: NASA/JPL/University of Iowa |
|
Saturn Storms Observed by Vo
Description |
Here on the Gallery page you can find the very latest images, videos and products from the Cassini-Huygens mission to Saturn, including the spectacular launch, spacecraft assembly and the exciting trip to Saturn. |
Full Description |
Voyager 1 and 2 observed radio signals from lightning which were interpreted as being from a persistent, low-latitude storm system which was extended in longitude, perhaps similar to the region highlighted on this Voyager 2 image acquired on Aug. 4, 1981, from a distance of 21 million kilometers (13 million miles). Similar lightning detections by Cassini suggest a much more variable pattern of storms which come and go on time scales of days. The differences may be explained, in part, by stark differences in the shadows cast by the rings between the Voyager and Cassini eras. This image was previously released on December 5, 1998. For original caption see PIA01364. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The radio and plasma wave science team is based at the University of Iowa, Iowa City. For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the instrument team's home page, http://www-pw.physics.uiowa.edu/plasma-wave/cassini/home.html . Image Credit: NASA/JPL |
|
Saturn's B rings
PIA02289
Saturn
Imaging Science Subsystem -
Title |
Saturn's B rings |
Original Caption Released with Image |
This narrow-angle camera image of Saturn's B Ring and Cassini Division was taken through the Clear filter from a distance of 12.6 million km on 3 November 1980. The Cassini Division separating the A and B Rings is clearly not an empty region. The Division shows several substantial well-defined ringlets. JPL managed the Voyager Project for NASA's Office of Space Science. |
|
Description |
Shepherd Satellites |
Full Description |
This image taken by the Voyager 2 spacecraft of Saturn's A-ring shows the thin F-ring bracketed by its two shepherding satellites. Because the inner moon revolves around the planet slightly faster than the outer one, the satellites lap each other every 25 days. This picture was taken on August 15, 1981, when Voyager 2 was 10.5 million kilometers (6.6 million miles) from Saturn. At that instant, the shepherds were less than 1,800 kilometers (1,100 miles) apart. For higher resolution, click here. |
|
Description |
Departing Saturn |
Full Description |
Voyager 1 looked back at Saturn on November 16, 1980, four days after the spacecraft flew past the planet, to observe the appearance of Saturn and its rings from this unique perspective. A few of the spokelike ring features discovered by Voyager appear in the rings as bright patches in this image, taken at a distance of 5.3 million kilometers (3.3 million miles) from the planet. Saturn's shadow falls upon the rings, and the bright Saturn crescent is seen through all but the densest portion of the rings. For a high resolution image, click here. |
|
Description |
Shepherd Satellites |
Full Description |
This image taken by the Voyager 2 spacecraft of Saturn's A-ring shows the thin F-ring bracketed by its two shepherding satellites. Because the inner moon revolves around the planet slightly faster than the outer one, the satellites lap each other every 25 days. This picture was taken on August 15, 1981, when Voyager 2 was 10.5 million kilometers (6.6 million miles) from Saturn. At that instant, the shepherds were less than 1,800 kilometers (1,100 miles) apart. For higher resolution, click here. |
|
Description |
Shepherd Satellites |
Full Description |
This image taken by the Voyager 2 spacecraft of Saturn's A-ring shows the thin F-ring bracketed by its two shepherding satellites. Because the inner moon revolves around the planet slightly faster than the outer one, the satellites lap each other every 25 days. This picture was taken on August 15, 1981, when Voyager 2 was 10.5 million kilometers (6.6 million miles) from Saturn. At that instant, the shepherds were less than 1,800 kilometers (1,100 miles) apart. For higher resolution, click here. |
|
Description |
Departing Saturn |
Full Description |
Voyager 1 looked back at Saturn on November 16, 1980, four days after the spacecraft flew past the planet, to observe the appearance of Saturn and its rings from this unique perspective. A few of the spokelike ring features discovered by Voyager appear in the rings as bright patches in this image, taken at a distance of 5.3 million kilometers (3.3 million miles) from the planet. Saturn's shadow falls upon the rings, and the bright Saturn crescent is seen through all but the densest portion of the rings. For a high resolution image, click here. |
|
Saturn System Montage
Title |
Saturn System Montage |
Full Description |
This montage of images of the Saturnian system was prepared from an assemblage of images taken by the Voyager 1 spacecraft during its Saturn encounter in November 1980. This artist's view shows Dione in the forefront, Saturn rising behind, Tethys and Mimas fading in the distance to the right, Enceladus and Rhea off Saturn's rings to the left, and Titan in its distant orbit at the top. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California. |
Date |
11/17/1980 |
NASA Center |
Jet Propulsion Laboratory |
|
Jupiter, its great Red Spot
Name of Image |
Jupiter, its great Red Spot three of its four largest satellites |
Date of Image |
1979-02-05 |
Full Description |
On February 5, 1979, Voyager 1 made its closest approach to Jupiter since early 1974 and 1975 when Pioneers 10 and 11 made their voyages to Jupiter and beyond. Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and recording many other scientific measurements. Although astronomers had studied Jupiter from Earth for several centuries, scientists were surprised by many of Voyager 1 and 2's findings. They now understand that important physical, geological, and atmospheric processes go on that they had never observed from Earth. Discovery of active volcanism on the satellite Io was probably the greatest surprise. It was the first time active volcanoes had been seen on another body in the solar system. Voyager also discovered a ring around Jupiter. Thus Jupiter joins Saturn, Uranus, and Neptune as a ringed planet -- although each ring system is unique and distinct from the others. |
|
Neptune's rings
PIA02207
Neptune
Imaging Science Subsystem -
Title |
Neptune's rings |
Original Caption Released with Image |
This wide-angle Voyager 2 image, taken through the camera's clear filter, is the first to show Neptune's rings in detail. The two main rings, about 53,000 km (33,000 miles) and 63,000 km (39,000 miles) from Neptune, are 5 to 10 times brighter than in earlier images. The difference is due to lighting and viewing geometry. In approach images, the rings were seen in light scattered backward toward the spacecraft at a 15-degree phase angle. However, this image was taken at a 135-degree phase angle as Voyager left the planet. That geometry is ideal for detecting microscopic particles that forward-scatter light preferentially. The fact that Neptune's rings are so much brighter at that angle means the particle-size distribution is quite different from most of Uranus' and Saturn's rings, which contain fewer dust-size grains. However, a few components of the Saturnian and Uranian ring systems exhibit forward-scattering behavior: The F ring and the Encke Gap ringlet at Saturn, and 1986U1R at Uranus. They are also narrow, clumpy ringlets with kinks, and are associated with nearby moonlets too small to detect directly. In this image, the main clumpy arc, composed of three features each about 6 to 8 degrees long, is clearly seen. This image was obtained when Voyager was 1.1 million km (683,000 miles) from Neptune. Exposure time was 111seconds. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications. |
|
Saturn's satellite Rhea
PIA01372
Saturn
Imaging Science Subsystem -
Title |
Saturn's satellite Rhea |
Original Caption Released with Image |
Bright streaks and blotches are visible against a darker back-ground on the surface of Saturn's satellite Rhea, seen in this Voyager 1 image taken Nov. 11, 1980 from a range of 1,925,000 kilometers (1,196,000 miles). Even the dark areas, thought to be water frost and ice, are fairly bright with about 50 percent reflectance. The bright streaks may be related to impacts by objects that throw out pulverized ice grains from beneath the ice-covered surface. Some of the bright streaks are not straight but have a curved appearance similar to the grooved, icy terrain on Jupiter's satellite Ganymede seen in Voyager photographs taken at this resolution. Scientists do knot yet know if a satellite of Rhea's size (approximately 1,500 kilometers or 900 miles in diameter) can have an active thermal history like Ganymede's, but higher resolution photographs taken by Voyager should reveal clues to its history. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA. |
|
Dione - circular impact crat
PIA02265
Saturn
Imaging Science Subsystem -
Title |
Dione - circular impact craters |
Original Caption Released with Image |
Circular impact craters up to about 100 kilometers (60 miles) in diameter are seen in this view of Saturn's icy moon Dione. The image was taken by Voyager 1 from a range of 790,000 kilometers (500,000 miles) at 2:20 a.m. PST on November 12. Bright, wispy markings form complex arcuate patterns on the surface. These markings are slightly brighter than the brightest features seen by Voyager on Jupiter's moons, suggesting that they are surface frost deposits. The patterns of the bright bands hint at an origin due to internal geologic activity, but the resolution is not yet sufficient to prove or disprove this idea. Dione's diameter is only 1100 kilometers (700 miles), much smaller than any of Jupiter's icy moons. It thus belongs to a class of small, icy objects never observed before the Voyager I Saturn encounter. The view here is of the face which trails in orbit. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA. |
|
Saturn's moon Tethys
PIA01399
Saturn
Imaging Science Subsystem -
Title |
Saturn's moon Tethys |
Original Caption Released with Image |
Voyager 2 obtained this view of Saturn's moon Tethys on Aug.25 from a distance of 540,000 kilometers (335,000 miles). It shows the numerous impact craters and fault valleys of a very ancient surface. Tethys itself is 1,090 km. (675 mi.) in diameter, and the great chasm seen at the top of this image extends 1,700 km. (1,050 mi.), halfway across the satellite. The largest impact crater visible here is 90 km. (55 mi.) in diameter. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif. |
|
|