|
Search Results: All Fields similar to 'Dryden or Langley' and What equal to 'Earth'
|
Printer Friendly |
ER-2
News Release 06-25P ER-2 Alo
7/1/08
Description |
News Release 06-25P ER-2 Aloft Again After a lengthy downtime for a major overhaul, NASA 806, one of NASA's two high-flying ER-2 Earth resources aircraft, took to the skies recently from NASA's Dryden Flight Research Center on its first science mission in over two years. The flight checked out the functionality of sensitive instruments that will calibrate and validate data from sensors installed on the recently launched CALIPSO and CloudSat weather, climate and air quality monitoring satellites during a series of missions led by NASA's Langley Research Center with support from the Jet Propulsion Laboratory in late July and August. CALIPSO, an acronym for Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, combines an active lidar instrument with passive infrared and visible-light imagers to probe the vertical structure and properties of thin clouds and aerosols (airborne particles). The complimentary CloudSat satellite carries a cloud profiling radar system that uses microwave energy to observe cloud particles and determine the mass of water and ice within clouds. The mission will provide the first global survey of cloud properties that are critical for understanding their effects on both weather and climate. Flying in formation with three other satellites, CALIPSO and CloudSat are expected to provide scientists and meteorologists with a greater understanding of our climate system. Photo Description NASA Dryden life support technician Jim Sokolik assists pressure-suited pilot Dee Porter into the cockpit of NASA's ER-2 Earth resources aircraft. July 13, 2006 NASA Photo / Jim Ross ED06-0117-13 |
Date |
7/1/08 |
|
The Road to Apollo
A full-scale model of the Me
3/16/09
Description |
A full-scale model of the Mercury capsule was tested in the Langley 30- by 60-Foot Full-Scale Wind Tunnel. Managed at Langley Research Center, the objectives of the Mercury program were quite specific -- to orbit a crewed spacecraft around the Earth, to investigate the ability of humans to function in space and to recover both human and spacecraft safely. Project Mercury accomplished the first orbital flight made by an American, astronaut John Glenn. Credit: NASA |
Date |
3/16/09 |
|
Ask A Scientist
Scientists from the Science
5/13/08
Description |
Scientists from the Science Directorate at NASA's Langley Research Center, including Marty Mlynczak, Bruce Doddridge and Lin Chambers, participated in a series of "Ask a Scientist" panels for the public at EarthFest. Colleagues from the Virginia Institute for Marine Science and from the College of William and Mary also participated as panelists. The space also served as a gallery for Earth art, photographs and data images of our home planet from space. Credit: NASA/Sean Smith |
Date |
5/13/08 |
|
Dave Kratz
Dave Kratz with the Climate
5/13/08
Description |
Dave Kratz with the Climate Science Branch sets up the solar telescope on the great lawn in front of the Ferguson Center for the Arts for participants attending EarthFest. The connection between the sun and the Earth is important for researchers at NASA Langley as they study climate change and the balance of energy and heat in our atmosphere. Credit: NASA/Sean Smith |
Date |
5/13/08 |
|
The Road to Apollo 07: John
In the opinion of many space
4/6/09
Description |
In the opinion of many space historians, Langley's most important contribution to the Apollo program was its development of Lunar Orbit Rendezvous (LOR). Here, John Houbolt explains the critical weight-saving advantage of the LOR concept. The basic premise was to fire an assembly of three spacecraft into Earth orbit on top of a single powerful rocket. Without this successful mission concept, the United States may still have landed humans on the moon, but it probably would not have happened by the end of the 1960s as directed by President Kennedy. Credit: NASA |
Date |
4/6/09 |
|
Active Sensing of CO2 Emissi
Researchers from the Science
11/24/08
Description |
Researchers from the Science Directorate at NASA Langley are working to better understand Earth's atmosphere and our changing climate. One group within the SD has partnered with ITT in Fort Wayne, Ind., to build and test a laser instrument called ASCENDS -- short for Active Sensing of CO<sub>2</sub> Emissions over Nights, Days, and Seasons -- to study atmospheric carbon dioxide, an important greenhouse gas that is know to influence climate change. This fall, the teams met at the LaRC hangar to test-fly the instrument's Engineering Development Unit on the LaRC UC-12, a new aircraft at NASA Langley. In this photo, Mike Dobbs, instrument Co-Principal Investigator from ITT, pours liquid nitrogen to be used to cool the laser detector while in flight. The UC-12 is directly behind Dobbs awaiting take-off. Ultimately, the ASCENDS team hopes to see their instrument concept flown in space as Advanced CO<sub>2</sub> and Climate Laser International Mission (ACCLAIM), one of the 15 missions of critical importance recommended by the 2007 decadal survey for Earth science. Credit: NASA/Sean Smith |
Date |
11/24/08 |
|
EarthFest Face Painting
Juliann and Colleen Rink, da
5/13/08
Description |
Juliann and Colleen Rink, daughters of Chris Rink of the Office of Strategic Communications and Education, got their faces painted and took part in the group Earth mural at EarthFest. Credit: NASA/Sean Smith |
Date |
5/13/08 |
|
Crew Impact Attenuation Syst
Steve Nevins examines instru
2/20/09
Description |
Steve Nevins examines instrumentation next to the Crew Impact Attenuation System (CIAS) Test Article in the garage across from building 1297. Langley engineers recently designed and fabricated the 20,000-pound test article which completed seven preliminary impact tests at Langley's Landing and Impact Dynamics gantry since the start of the year. Later this month, technicians will attach energy absorbing struts to ready the hardware for testing the Orion seat pallet system. The CIAS test article emulates the Orion crew module interface to the seat pallet that will accommodate between four and six astronauts. Once energy absorbing struts are attached to the seat pallet, a new phase of testing for Orion will begin. The series of tests will evaluate Orion's energy absorbing seat system, which will help reduce loads on the astronauts and protect them from injury when returning to Earth from a mission to the International Space Station or the moon. Credit: NASA/Sean Smith |
Date |
2/20/09 |
|
Penn State's NATIVE Mobile R
On July 13, Pennsylvania Sta
8/3/09
Description |
On July 13, Pennsylvania State University's Dr. Anne Thompson arrived at NASA Langley with her research team to set up their NATIVE (Nittany Atmospheric Trailer) Integrated Validation Experiment) mobile research facility. During their stay, the researchers will be measuring air quality from the trailer in support of NASA's GEO-CAPE (Geostationary Coastal and Air Pollution Events) mission, a next-generation Earth-observing satellite. The NATIVE facility will use its suite of instruments and data analysis tools to make local measurements of gases that are key to tracking pollution, such as carbon monoxide, ozone, nitrogen oxides and sulfur dioxide. Credit: NASA/Sean Smith |
Date |
8/3/09 |
|
Image of the Week -- IRVE
WALLOPS ISLAND, Va. -- A suc
8/18/09
Description |
WALLOPS ISLAND, Va. -- A successful NASA flight test has shown that a spacecraft returning to Earth can use an inflatable heat shield to slow and protect itself as it enters the atmosphere at hypersonic speeds. This was the first time anyone has successfully flown an inflatable reentry capsule, according to engineers at NASA's Langley Research Center. The Inflatable Re-entry Vehicle Experiment, or IRVE, was vacuum-packed into a 15-inch diameter payload "shroud" and launched on a small sounding rocket from NASA's Wallops Flight Facility on Wallops Island, Va. Nitrogen inflated the 10-foot (3 m) diameter heat shield, made of several layers of silicone-coated industrial fabric, to a mushroom shape in space several minutes after liftoff. "This was a huge success," said Mary Beth Wusk, IRVE project manager, based at Langley. "IRVE was a small-scale demonstrator. Now that we've proven the concept, we'd like to build more advanced aeroshells capable of handling higher heat rates." The Black Brant 9 rocket took about four minutes to lift the experiment to an altitude of 131 miles (211 km). Less than a minute later it was released from its cover and started inflating on schedule at 124 miles (199.5 km) up. The inflation of the shield took less than 90 seconds. "Everything performed well even into the subsonic range where we weren't sure what to expect," said Neil Cheatwood, IRVE principal investigator and chief scientist for the Hypersonics Project of NASA's Aeronautics Research Mission Directorate's Fundamental Aeronautics Program. "The telemetry looks good. The inflatable bladder held up well." Inflatable heat shields hold promise for future planetary missions, according to researchers. To land more mass on Mars at higher surface elevations, for instance, mission planners need to maximize the drag area of the entry system. The larger the diameter of the aeroshell, the bigger the payload can be. Credit: NASA/Sean Smith |
Date |
8/18/09 |
|
Photo Description |
NASA's Hyper-X Program Manager Vince Rausch talks about the X-43 [ http://www.dfrc.nasa.gov/Gallery/Photo/X-43A/index.html ] from his office at NASA Langley Research Center in Hampton, VA. |
Project Description |
Vincent L. Rausch was named Hyper-X Program Manager and started working at NASA Langley Research Center in July 1996. He is responsible for the overall execution of the joint Langley ? NASA Dryden Flight Research Center Hyper-X program which will flight-validate the performance of an airframe-integrated supersonic combustion ramjet (scramjet) engine installed on an X-43 research aircraft [ http://www.dfrc.nasa.gov/Gallery/Photo/X-43A/index.html ]. Mr. Rausch joined the NASA Headquarters Office of Aeronautics in 1991 as the Assistant Director for Aeronautics (High-Performance Aircraft). In this capacity, he coordinated NASA high-performance aircraft programs with the Department of Defense. In 1992, he was appointed Director for National Aero-Space Plane (NASP) and served as the agency focal point for NASA involvement in the DOD ? NASA NASP program. In 1995, as Director, Inter-Enterprise Operations, he coordinated Aeronautics Enterprise activities with the other NASA enterprises (Space Science, Earth Science, and Human Exploration and Development of Space). Before retiring as a colonel from the U.S. Air Force in 1991, Mr. Rausch spent three years as the first Director of the NASP Inter-Agency Office (NIO) in the Pentagon. His NIO responsibilities included the DOD portion of the NASP budget, congressional liaison, and day-to-day coordination with NASA. From 1986 to 1988, he served in the NASP Joint Program Office (JPO) at Wright-Patterson AFB, OH. His positions included acting Program Manager, Director of Program Operations, and Director of Systems Applications. From 1982 to 1986, while assigned to the Aeronautical Systems Division (ASD), at Wright-Patterson AFB, he directed the Transatmospheric Vehicle (TAV) program which examined single- and two-stage-to-orbit military spaceplanes. He also led ASD participation in the Copper Canyon program, the Defense Advanced Research Projects Agency-funded effort which established the feasibility of the NASP. His Strategic Air Command operational experience includes over 3,000 hours in the B-52 and 56 combat missions. Mr. Rausch is the recipient of the Air Force Legion of Merit, Defense Meritorious Service Medal, Air Force Meritorious Service Medal, Air Medal (with two oak leaf clusters), Air Force Commendation Medal (with one oak leaf cluster) and a NASA Outstanding Service Award. He has a BA from Coe College, Cedar Rapids, IA, and an MBA from Inter-American University, San Germain, PR. He is also a graduate of the Federal Executive Institute, Air War College, Armed Forces Staff College, Air Command and Staff College, and Squadron Officer School. A native of Charlottesville, VA, Mr. Rausch and his wife, Diane, reside in Williamsburg, Virginia. |
Photo Date |
February 11, 2004 |
|
M2-F1 and M2-F2 lifting bodi
Project Description |
The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a "flying bathtub," and was designated the M2-F1, the "M" referring to "manned" and "F" referring to "flight" version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter "Whitey" Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden "Bud" Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47 aircraft and released. These initial car-tow tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to 120 mph. A small solid landing rocket, referred to as the "instant L/D rocket," was installed in the rear base of the M2-F1. This rocket, which could be ignited by the pilot, provided about 250 pounds of thrust for about 10 seconds. The rocket could be used to extend the flight time near landing if needed. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, and the U.S. Air Force's X-24 program, with an X-24A and -B built by Martin. The Lifting Body program also heavily influenced the Space Shuttle program. The M2-F1 program demonstrated, the feasibility of the lifting body concept for horizontal landings of atmospheric entry vehicles. It also demonstrated a procurement and management concept for prototype flight test vehicles that produced rapid results at very low cost (approximately $50,000, excluding salaries of government employees assigned to the project). A fleet of lifting bodies flown at the NASA Dryden Flight Research Center, Edwards, California, from 1963 to 1975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of Dryden's M2-F1 [ http://www.dfrc.nasa.gov/Gallery/Photo/M2-F1/index.html ] program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt at Dryden and redesignated the M2-F3 [ http://www.dfrc.nasa.gov/Gallery/Photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Photo Date |
February 24, 1966 |
|
CERES Ocean Validation Exper
At the mouth of the Chesapea
8/13/09
Description |
At the mouth of the Chesapeake Bay is a unique instrument platform: the Coast Guard's Chesapeake Lighthouse. Taking advantage of it's open ocean location far from typical land-based factors, Science Directorate researchers use the lighthouse to maintain a suite of instruments that provide continuous radiation measurements and validate or provide ground truth for the satellite-based CERES instruments. Collectively, the suite of instruments is called the CERES Ocean Validation Experiment (COVE). Clouds and the Earth's Radiant Energy System -- or CERES -- data provide key knowledge about Earth's changing climate and are used to study the energy exchanged between the Sun, the Earth's atmosphere, surface and clouds, and space. COVE instruments and measurements include the Baseline Surface Radiation Network instrument suite -- uplooking shaded and unshaded broadband pyranometers, shaded pyrgeometers, downlooking pyranometers and pyrgeometers, normal incidence pyrheliometers, an AERONET sunphotometer, uplooking and downlooking multifilter rotating shadowband radiometers (MFRSRs), a micropulse lidar, pressure, temperature, relative humidity, National Oceanic and Atmospheric Administration (NOAA) global positioning system integrated precipitable water vapor (GPS-IPW), and National Data Buoy Center (NDBC) wave height and period. Fred Denn, a COVE scientist with SSAI at NASA Langley, adjusts an instrument on the lookout tower of the lighthouse, about 120 feet (36.5 m) above the ocean surface. Langley researchers travel to the lighthouse every few weeks to adjust and maintain the instruments and conduct research. Credit: NASA/Sean Smith |
Date |
8/13/09 |
|
Pegasus Mated under Wing of
Photo Description |
A close-up view of the Pegasus space-booster attached to the wing pylon of NASA?s B-52 launch aircraft at NASA's Dryden Flight Research Center, Edwards, California. The Pegasus rocket booster was designed as a way to get small payloads into space orbit more easily and cost-effectively. It has also been used to gather data on hypersonic flight. |
Project Description |
Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Photo Date |
August 2, 1994 |
|
PHYSX Glove Test
Photo Description |
A mock-up of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental "glove" undergoes hot-loads tests at NASA's Dryden Flight Research Center, Edwards, California. The thermal ground test simulates heats and pressures the wing glove will experience at hypersonic speeds. Quartz heat lamps subject this model of a Pegasus booster rocket's right wing glove to the extreme heats it will experience at speeds approaching Mach 8. The glove has a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experimental flight. |
Project Description |
Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Photo Date |
September 13, 1995 |
|
Ikhana Resumes Fire Mission
NASA's Autonomous Modular Sc
9/22/08
Description |
NASA's Autonomous Modular Scanner mounted on the Ikhana remotely piloted aircraft captured this thermal-infrared imagery during two passes over the Hidden wildfire during a flight over the southern Sierras about 30 miles northeast of Visalia in Central California on Sept. 19, 2008. This false-color, three-dimensional image shows unburned vegetation in green, smoke and bare areas in bluish-white and fire hot spots in yellow and red, overlaid on a Google Earth Digital Globe terrain image. Text credit: NASA's Dryden Flight Research Center > Read more about the Ikhana mission |
Date |
9/22/08 |
|
M2-F3 with test pilot John A
Photo Description |
NASA research pilot John A. Manke is seen here in front of the M2-F3 Lifting Body. Manke was hired by NASA on May 25, 1962, as a flight research engineer. He was later assigned to the pilot's office and flew various support aircraft including the F-104, F5D, F-111 and C-47. After leaving the Marine Corps in 1960, Manke worked for Honeywell Corporation as a test engineer for two years before coming to NASA. He was project pilot on the X-24B and also flew the HL-10, M2-F3, and X-24A lifting bodies. John made the first supersonic flight of a lifting body and the first landing of a lifting body on a hard surface runway. Manke served as Director of the Flight Operations and Support Directorate at the Dryden Flight Research Center prior to its integration with Ames Research Center in October 1981. After this date John was named to head the joint Ames-Dryden Directorate of Flight Operations. He also served as site manager of the NASA Ames-Dryden Flight Research Facility. John is a member of the Society of Experimental Test Pilots. He retired on April 27, 1984. |
Project Description |
A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to 1975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC's M2-F1 [ http://www.dfrc.nasa.gov/Gallery/Photo/M2-F1/index.html ] program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the help and cooperation of the FRC and redesignated the M2-F3 [ http://www.dfrc.nasa.gov/Gallery/Photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Photo Date |
December 20, 1972 |
|
M2-F2 flight preparation and
M2-F2 experiencing lateral o
Milt Thompson prepares for M
M2-F2 test flight with F5D-1
M2-F2 drop from NB-52A mothe
M2-F1 car tow test with 1963
Dale Reed's home movie of an
Mothership Drop Test of an M
Mothership Drop Test of an M
HL-10 approach and landing a
HL-10 after landing with pil
HL-10 cockpit view of approa
HL-10 landing with F5D-1 Sky
Global Hawk
Read News Release 09-03 NASA
1/21/09
Description |
Read News Release 09-03 NASA Dryden Flight Research Center director Kevin L. Petersen addresses dignitaries and news media representatives during unveiling of NASA's first Global Hawk autonomously operated aircraft at the center Jan. 15. This is one of two that will be used by NASA for Earth science missions and by Northrop Grumman Corp. for follow-on developmental testing. January 15, 2009 NASA Photo / Tom Tschida ED09-0010-023 |
Date |
1/21/09 |
|
ER-2
One of NASA's ER-2 high-alti
2/19/09
Description |
One of NASA's ER-2 high-altitude Earth science aircraft banks away from the photo chase plane during a flight over a southern Sierra Nevada snowscape. NASA's Dryden Flight Research Center operates two of the Lockheed-built aircraft on a wide variety of environmental science, atmospheric sampling and satellite data verification missions. February 26, 2008 NASA Photo / Carla Thomas ED08-0053-07 |
Date |
2/19/09 |
|
More Los Angeles Fire Images
Triple-digit temperatures, e
9/1/09
Description |
Triple-digit temperatures, extremely low relative humidities, dense vegetation that has not burned in decades, and years of extended drought are all contributing to the explosive growth of wildfires throughout Southern California. The Station fire, which began Aug. 26, 2009, in La Canada/Flintridge, not far from NASA's Jet Propulsion Laboratory, had reportedly burned 105,000 acres (164 square miles) of the Angeles National Forest by mid-day Aug. 31, destroying at least 21 homes and threatening more than 12,000 others. It is one of four major fires burning in Southern California at the present time. This image was acquired mid-morning on Aug. 30 by the backward (northward)-viewing camera of the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. The image is shown in an approximate perspective view at an angle of 46 degrees off of vertical. The area covered by the image is 245 kilometers (152 miles) wide. Several pyrocumulus clouds, created by the Station Fire, are visible above the smoke plumes rising from the San Gabriel Mountains north of Los Angeles in the left-center of the image. Smoke from the Station fire is seen covering the interior valleys along the south side of the San Gabriel Mountains, along with parts of the City of Los Angeles and Orange County, and can be seen drifting for hundreds of kilometers to the east over the Mojave Desert. The accompanying plots are histograms that display the heights of the smoke plumes and wind speeds. In this data set, the plume is injecting smoke more than 7 kilometers (4.3 miles) above sea level. MISR observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This image was generated from a portion of the imagery acquired during Terra orbit 51601. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, Md. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. JPL is a division of the California Institute of Technology. Image Credit: NASA/GSFC/LaRC/JPL, MISR Team |
Date |
9/1/09 |
|
POLAR STRATOSPHERIC CLOUDS
Polar stratospheric clouds o
4/5/00
Date |
4/5/00 |
Description |
Polar stratospheric clouds over Kiruna, Sweden, on Jan. 27, 2000. The colorful appearance of these clouds is due to the small size of their droplets and their high altitude, approximately 21,300 meters (70,000 ft). The small droplets in the clouds result in separation of light of different colors due to refraction of sunlight. Their high altitude allows for full solar illumination for up to 20 minutes following sunset at the ground. These clouds, which have long been called "Mother of Pearl" by Scandinavians, participate in a chain of events that leads to ozone depletion by human-produced chlorine. Between November 1999 and March 2000, the SAGE III Ozone Loss and Validation Experiment (SOLVE) provided scientists with measurements of ozone using a variety of satellite-, airplane-, balloon- and ground-based instruments. Scientists also obtained a comprehensive inventory of numerous other atmospheric gases and information on the physical and chemical properties of polar stratospheric clouds. The SOLVE mission was co-sponsored by the Upper Atmosphere Research Program, Atmospheric Effects of Aviation Project, Atmospheric Chemistry Modeling and Analysis Program, and Earth Observing System of NASA's Earth Science Enterprise as part of the validation program for the SAGE III instrument. Based primarily in Kiruna, Sweden, the campaign included scientists from the United States, Europe, Canada, Russia and Japan. A key aspect to the success of this mission was the permission to fly both NASA research aircraft over Russia. SOLVE was managed by the Ames Research Center, Moffett Field, CA, with extensive participation by science teams from Goddard Space Flight Center, Greenbelt, MD, Langley Research Center, Hampton, VA, and the Jet Propulsion Laboratory, Pasadena, CA, as well as a number of other government laboratories and universities. The ER-2 and DC-8 aircraft are based at Dryden Flight Research Center, Edwards, CA, and the U.S. balloon operations in Sweden were conducted by a team from the National Scientific Balloon Facility, Palestine, TX. |
|
HIGH ALTITUDE BALLOON/ARCTIC
A NASA high-altitude researc
4/5/00
Date |
4/5/00 |
Description |
A NASA high-altitude research balloon climbing to study the composition of the Arctic stratosphere from the Esrange Balloon Launch Facility near Kiruna, Sweden. With its helium bubble expanding to the size of a large building while in the stratosphere, the balloon carried a payload of about 450 Kg. (1000 lbs) to an altitude of about 30,500 meters (100,000 ft.). Following flight, the instrument payload lands by parachute and is recovered for subsequent flights. Between November 1999 and March 2000, the SAGE III Ozone Loss and Validation Experiment (SOLVE) provided scientists with measurements of ozone using a variety of satellite-, airplane-, balloon- and ground-based instruments. Scientists also obtained a comprehensive inventory of numerous other atmospheric gases and information on the physical and chemical properties of polar stratospheric clouds. The SOLVE mission was co-sponsored by the Upper Atmosphere Research Program, Atmospheric Effects of Aviation Project, Atmospheric Chemistry Modeling and Analysis Program, and Earth Observing System of NASA's Earth Science Enterprise as part of the validation program for the SAGE III instrument. Based primarily in Kiruna, Sweden, the campaign included scientists from the United States, Europe, Canada, Russia and Japan. A key aspect to the success of this mission was the permission to fly both NASA research aircraft over Russia. SOLVE was managed by the Ames Research Center, Moffett Field, CA, with extensive participation by science teams from Goddard Space Flight Center, Greenbelt, MD, Langley Research Center, Hampton, VA, and the Jet Propulsion Laboratory, Pasadena, CA, as well as a number of other government laboratories and universities. The ER-2 and DC-8 aircraft are based at Dryden Flight Research Center, Edwards, CA, and the U.S. balloon operations in Sweden were conducted by a team from the National Scientific Balloon Facility, Palestine, TX. |
|
OZONE INSTRUMENTS LOADED ON
Scientists preparing their i
4/5/00
Date |
4/5/00 |
Description |
Scientists preparing their instruments for flight on the NASA ER-2 research aircraft inside the Arena Arctica hangar, Kiruna, Sweden. The plane carries dozens of instruments in two pods attached to the wings, in the Q-bay area below the cockpit and in the nose. These pieces of the plane can be detached allowing access to the instruments prior to take-off. Between November 1999 and March 2000, the SAGE III Ozone Loss and Validation Experiment (SOLVE) provided scientists with measurements of ozone using a variety of satellite-, airplane-, balloon- and ground-based instruments. Scientists also obtained a comprehensive inventory of numerous other atmospheric gases and information on the physical and chemical properties of polar stratospheric clouds. The SOLVE mission was co-sponsored by the Upper Atmosphere Research Program, Atmospheric Effects of Aviation Project, Atmospheric Chemistry Modeling and Analysis Program, and Earth Observing System of NASA's Earth Science Enterprise as part of the validation program for the SAGE III instrument. Based primarily in Kiruna, Sweden, the campaign included scientists from the United States, Europe, Canada, Russia and Japan. A key aspect to the success of this mission was the permission to fly both NASA research aircraft over Russia. SOLVE was managed by the Ames Research Center, Moffett Field, CA, with extensive participation by science teams from Goddard Space Flight Center, Greenbelt, MD, Langley Research Center, Hampton, VA, and the Jet Propulsion Laboratory, Pasadena, CA, as well as a number of other government laboratories and universities. The ER-2 and DC-8 aircraft are based at Dryden Flight Research Center, Edwards, CA, and the U.S. balloon operations in Sweden were conducted by a team from the National Scientific Balloon Facility, Palestine, TX. |
|
ER-2 USED IN ARCTIC OZONE RE
The NASA ER-2 high-altitude
4/5/00
Date |
4/5/00 |
Description |
The NASA ER-2 high-altitude research plane on the runway of Kiruna, Sweden. The airplane -- a civilian variant of the U-2 reconnaissance plane capable of reaching altitudes as high as 21,330 meters (70,000 feet) -- carried into the stratosphere dozens of scientific instruments that measure the composition of Earth's ozone layer. The only person on board is the pilot, who must wear a pressurized spacesuit to guard against the dangers of high-altitude flight. Between November 1999 and March 2000, the SAGE III Ozone Loss and Validation Experiment (SOLVE) provided scientists with measurements of ozone using a variety of satellite-, airplane-, balloon- and ground-based instruments. Scientists also obtained a comprehensive inventory of numerous other atmospheric gases and information on the physical and chemical properties of polar stratospheric clouds. The SOLVE mission was co-sponsored by the Upper Atmosphere Research Program, Atmospheric Effects of Aviation Project, Atmospheric Chemistry Modeling and Analysis Program, and Earth Observing System of NASA's Earth Science Enterprise as part of the validation program for the SAGE III instrument. Based primarily in Kiruna, Sweden, the campaign included scientists from the United States, Europe, Canada, Russia and Japan. A key aspect to the success of this mission was the permission to fly both NASA research aircraft over Russia. SOLVE was managed by the Ames Research Center, Moffett Field, CA, with extensive participation by science teams from Goddard Space Flight Center, Greenbelt, MD, Langley Research Center, Hampton, VA, and the Jet Propulsion Laboratory, Pasadena, CA, as well as a number of other government laboratories and universities. The ER-2 and DC-8 aircraft are based at Dryden Flight Research Center, Edwards, CA, and the U.S. balloon operations in Sweden were conducted by a team from the National Scientific Balloon Facility, Palestine, TX. |
|
Lifting body pilots - Jerry
Photo Description |
Posing for this photo in front of the M2-F3 are (Left-Right) Air Force pilot Captain Jerauld Gentry, NASA pilots John Manke and William H. Dana. Kneeling is Air Force pilot Major Cecil Powell. These four pilots flew the M2-F3 on a total of 27 flights between June 2, 1970 and December 20, 1972. The vehicle reached a maximum altitude of 71,500 feet and a maximum speed of Mach 1.613. Dana joined the National Aeronautics and Space Administration's High-Speed Flight Station On October 1, 1958 (the birthday of NASA). As a research pilot, he was involved in some of the most significant aeronautical programs carried out at the Center. In the late 1960s and in the 1970s Dana was a project pilot on the lifting body program which flew several versions of the wingless vehicles and produced data that helped in development of the Space Shuttle. For his contributions to the lifting body program, Dana received the NASA Exceptional Service Medal. In 1976 he received the Haley Space Flight Award from the American Institute of Aeronautics and Astronautics for his research work on the M2-F3 lifting body control systems. In 1993 Dana became Chief Engineer at NASA's Dryden Flight Research Center. He has authored several technical papers and is a member of The Society of Experimental Test Pilots. He retired on May 29, 1998. John joined the National Aeronautics and Space Administration's Flight Research Center in 1962 as a research engineer and later became a research pilot, testing advanced craft such as the wingless lifting bodies, forerunners of the Space Shuttle. He was project pilot on the X-24B and also flew the HL-10, M2-F3, and X-24A lifting bodies. John made the first supersonic flight of a lifting body and the first landing of a lifting body on a hard surface runway. Manke served as Director of the Flight Operations and Support Directorate at the Dryden Flight Research Center prior to its integration with Ames Research Center in October 1981. After this date John was named to head the joint Ames-Dryden Directorate of Flight Operations. He also served as site manager of the NASA Ames-Dryden Flight Research Facility. John is a member of the Society of Experimental Test Pilots. He retired on April 27, 1984. |
Project Description |
A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to 1975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC's M2-F1 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ] program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the help and cooperation of the FRC and redesignated the M2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Photo Date |
1971 |
|
Global Hawk
The bulbous nose of one of N
1/8/09
Description |
The bulbous nose of one of NASA's two Global Hawk unmanned high-altitude aircraft houses communications and sensor payloads on Earth science missions. December 11, 2008 NASA Photo / Tony Landis ED08-0309-23 |
Date |
1/8/09 |
|
ED08-0309-24
This Global Hawk unmanned ai
1/8/09
Description |
This Global Hawk unmanned aircraft is one of two that are used by NASA for Earth science missions and by Northrop Grumman for follow-on developmental testing. December 11, 2008 NASA Photo / Tony Landis ED08-0309-24 |
Date |
1/8/09 |
|
ER-2
One of NASA's two ER-2 Earth
6/30/08
Description |
One of NASA's two ER-2 Earth resources aircraft shows off its lines during a flyover at the Edwards Air Force Base open house Oct. 28-29, 2006. October 28, 2006 NASA Photo by Jim Ross ED06-0202-62 |
Date |
6/30/08 |
|
ER-2
The large air intakes for it
6/30/08
Description |
The large air intakes for its powerful engine are obvious as NASA's high-flying ER-2 #806 Earth resources aircraft taxies out for another science mission. July 13, 2006 NASA Photo / Jim Ross ED06-0117-20 |
Date |
6/30/08 |
|
Ikhana
Project Description A Predat
7/9/08
Description |
Project Description A Predator B unmanned aircraft system is being used by NASA's Dryden Flight Research Center, Edwards, Calif., for a variety of environmental science and aeronautical research roles. Built by General Atomics Aeronautical Systems Inc. of San Diego in 2006, the aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-KAH-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana is being flown primarily on Earth science missions under NASA's Science Mission Directorate. It is also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. Photo Description A ground crewman unplugs electrical connections during pre-flight checks of NASA's Ikhana research aircraft. Ikhana's payload pod is mounted on the left wing. July 8, 2008 NASA Photo / Tony Landis ED08-0151-02 |
Date |
7/9/08 |
|
Ikhana
Project Description A Predat
7/9/08
Description |
Project Description A Predator B unmanned aircraft system is being used by NASA's Dryden Flight Research Center, Edwards, Calif., for a variety of environmental science and aeronautical research roles. Built by General Atomics Aeronautical Systems Inc. of San Diego in 2006, the aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-KAH-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana is being flown primarily on Earth science missions under NASA's Science Mission Directorate. It is also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. Photo Description Ground crewmen prepare NASA's IKhana remotely piloted research aircraft for another flight. Ikhana's infrared imaging sensor pod is visible under the left wing. July 8, 2008 NASA Photo / Tony Landis ED08-0151-07 |
Date |
7/9/08 |
|
X-38: Artist Concept of Re-E
Photo Description |
This is an artist's depiction of NASA's proposed Crew Return Vehicle (CRV) re-entering the earth's atmosphere. A team of NASA researchers began free flight tests of the X-38, a technology demonstrator for the CRV, at NASA's Dryden Flight Research Center, Edwards, California, in 1998. The CRV is being designed as a "lifeboat" for the International Space Station |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
1997 |
|
G-III
Project Description NASA's m
6/24/08
Description |
Project Description NASA's modified Gulfstream G-III aircraft provides a platform to test and evaluate a variety of new technologies, and can also be used to gather scientific data for geological studies or earthquake prediction. The G-III airframe has been structurally modified to incorporate a MAU-12 ejector rack on the bottom of the fuselage on which a variety of experiments can be mounted. As a Multi-Role Cooperative Research Platform, the heavily instrumented twin-turbofan aircraft provides long-term capability for efficient testing of subsonic flight experiments for NASA, the U.S. Air Force, other government agencies, academia, and private industry. Originally designated a C-20A by the Air Force, the aircraft was declared excess by that service and transferred to NASA Dryden at Edwards AFB, Calif., in September 2002. Unmanned Air Vehicle Synthetic Aperture Radar (UAVSAR) The Unmanned Air Vehicle Synthetic Aperture Radar (UAVSAR) is an Earth Science Capabilities Demonstration project jointly developed by the Jet Propulsion Laboratory and NASA Dryden Flight Research Center in which a synthetic aperture radar is being flight-validated on a Grumman Gulfstream G-III in a specially designed pod that will be interoperable with both manned and unmanned aircraft. The modified G-III provides a platform to not only test and evaluate the new radar, but can also be used to gather scientific data for geological studies on earthquake prediction. In order to support the installation of the UAVSAR pod, the G-III airframe has been structurally modified to incorporate a MAU-12 ejector rack on the bottom of the fuselage. This unique G-III modification will remain available for use by future research projects. As a Multi-Role Cooperative Research Platform, the heavily instrumented twin-turbofan aircraft provides long-term capability for efficient testing of subsonic flight experiments for NASA, the U.S. Air Force, other government agencies, academia, and private industry. Originally designated a C-20A by the Air Force, the aircraft was declared excess by that service and transferred to NASA Dryden at Edwards AFB, Calif., in September 2002. The joint use of this aircraft is a result of the NASA Dryden/Edwards Air Force Base Alliance, which shares some resources as cost-cutting measures. Photo Description NASA's Gulfstream-III research testbed lifts off the Edwards AFB runway on an envelope-expansion flight test with the UAV synthetic aperture radar pod. February 26, 2007 NASA Photo / Tom Tschida ED07-0027-39 |
Date |
6/24/08 |
|
M2-F2 flight preparation and
Title |
M2-F2 flight preparation and launch |
Description |
This movie clip runs about 27 seconds and shows the cockpit canopy close-out by the ground crew, the aircraft hanging from the NB-52B wing pylon, and the M2-F2 being dropped away from the mothership. A fleet of lifting bodies flown at the NASA Flight Research Center (FRC), Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver (in the atmosphere) and safely land a wingless vehicle. These lifting bodies were basically designed so they could fly back to Earth from space and be landed like an aircraft at a pre-determined site. They served as precursors of today's Space Shuttle, the X-33, and the X-38, providing technical and operational engineering data that shaped all three space vehicles. (In 1976 NASA renamed the FRC as the NASA Dryden Flight Research Center (DFRC) in honor of Hugh L. Dryden.) In 1962, FRC Director Paul Bikle approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a "flying bathtub," and was designated the M2-F1. Built by Gus Briegleb, a sailplane builder from El Mirage, California, it featured a plywood shell, placed over a tubular steel frame crafted at the FRC. Construction was completed in 1963. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA Ames Research Center and NASA and Langley Research Center -- the M2-F2 and the HL-10, both built by the Northrop Corporation, Los Angeles, California. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and "10" is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2 -- which looked much like the M2-F1 -- occurred on July 12, 1966. Thompson was the pilot. By then, the same B-52 used to air launch the famed X-15 rocket research aircraft had been modified to also carry the lifting bodies into the air and Thompson was dropped from the B-52 wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. Following the mishap, the M2-F2 was redesigned with a center fin as the M2-F3, which flew from 1970 to 1972. The M2-F2 weighed 4,620 pounds without ballast, was roughly 22 feet long, and had a width of about 10 feet. |
Date |
01.01.1969 |
|
STS-66 Edwards Landing Appro
The space shuttle Atlantis a
9/17/08
Description |
The space shuttle Atlantis approaches runway 22 at Edwards, California, to complete the STS-66 mission dedicated to the third flight of the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3), part of NASA's Mission to Planet Earth program. The astronauts also deployed and retrieved a free-flying satellite designed to study the middle and lower thermospheres and perform a series of experiments covering life sciences research and microgravity processing. November 1994 NASA / Photo EC94-42853-4 |
Date |
9/17/08 |
|
NASA's ER-2 Gathers Forest A
Read Mission Status Report O
6/30/09
Description |
Read Mission Status Report One of NASA's two ER-2 Earth resources aircraft soars over the crowd during the 2009 Air Force Material Command's Freedom's Call Tattoo on June 26 at Wright-Patterson Air Force Base near Dayton, Ohio. Photo Courtesy Tim Gaffney / AviationDayton.com June 26, 2009 |
Date |
6/30/09 |
|
X-24B in flight and landing
X-24B landing on runway 04 a
X-24B launch - air drop from
X-24B launch from B-52 mothe
M2-F3 with test pilot John A
Title |
M2-F3 with test pilot John A. Manke |
Description |
(control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the help and cooperation of the FRC and redesignated theM2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969., NASA research pilot John A. Manke is seen here in front of the M2-F3 Lifting Body. Manke was hired by NASA on May 25, 1962, as a flight research engineer. He was later assigned to the pilot's office and flew various support aircraft including the F-104, F5D, F-111 and C-47. After leaving the Marine Corps in 1960, Manke worked for Honeywell Corporation as a test engineer for two years before coming to NASA. He was project pilot on the X-24B and also flew the HL-10, M2-F3, and X-24A lifting bodies. John made the first supersonic flight of a lifting body and the first landing of a lifting body on a hard surface runway. Manke served as Director of the Flight Operations and Support Directorate at the Dryden Flight Research Center prior to its integration with Ames Research Center in October 1981. After this date John was named to head the joint Ames-Dryden Directorate of Flight Operations. He also served as site manager of the NASA Ames-Dryden Flight Research Facility. John is a member of the Society of Experimental Test Pilots. He retired on April 27, 1984. A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC'sM2-F1 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ]program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation |
Date |
01.01.1972 |
|
X-38 Drop Model: Glides to E
Photo Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
1995 |
|
X-38 Drop Model: Used to Tes
Photo Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. |
Project Description |
The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. ItÕs landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A, contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, DrydenÕs B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Photo Date |
1995 |
|
M2-F3 Lifting Body glide fli
M2-F3 Lifting Body flight
Lifting Body Aircraft
A fleet of lifting-body rese
1/5/09
Description |
A fleet of lifting-body research vehicles were flown at Dryden from 1963 to 1975 to validate the concept of flying a wingless craft back to Earth from space and landing it like a conventional aircraft at a pre-determined site. Aerodynamic lift - essential to flight in the atmosphere - was obtained from the shape of the vehicles rather than from wings, as on a normal aircraft. In 1962, Flight Research Center director Paul Bikle approved a program to build a lightweight, unpowered lifting body as a prototype to test the wingless concept. The M2-F1's half-cone shape looked like a "flying bathtub" and featured a plywood shell over a tubular steel frame. Initially towed aloft by a Pontiac convertible driven at speeds up to 120 mph across Rogers Dry Lake, the vehicle was later towed behind a C-47 and released for glide flights from greater altitudes. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1 before it was retired. A historical artifact now owned by the Smithsonian Institution National Air and Space Museum, the M2-F1 is on long-term loan to Dryden for display purposes. The success of the M2-F1 program led to development and construction of two heavyweight lifting bodies, the M2-F2 and the HL-10, that were carried to launch altitude beneath the wing of a modified B-52 and launched to complete rocket-powered flight profiles followed by a glide landing on the dry lakebed. The first flight of the M2-F2 (which looked much like the M2-F1) took place on July 12, 1966. On May 10, 1967, during the 16th flight, a landing accident severely damaged the vehicle and seriously injured NASA research pilot Bruce Peterson. It was subsequently rebuilt with modifications for improved control characteristics and re-designated M2-F3. During more than two-dozen flights, the M2-F3 reached a top speed of 1,064 mph (Mach 1.6) and a maximum altitude of 71,500 feet. It is now on display in the National Air and Space Museum in Washington, D.C. The HL-10 had a more streamlined aerodynamic shape than did the M2-series vehicles. It featured a longitudinally curved bottom and a laterally rounded top and had a delta planform. Following its maiden flight on Dec. 22, 1966, it set several program records, including the fastest speed reached by any of the lifting bodies - 1,228 mph (Mach 1.86) - and highest lifting body flight - 90,303 feet. Data from these flights contributed substantially to development of the space shuttles. The HL-10 is now on public display at the entrance to Dryden. In 1969 another shape, the bulbous X-24A, was introduced. It was flown 28 times, providing data that helped engineers to design a prototype Crew Return Vehicle some three decades later. The X-24A was later modified into a new configuration, the X-24B - nicknamed the "flying flatiron" - with a rounded top, flat bottom and a double-delta planform that ended in a pointed nose. To reduce the costs of constructing a new research vehicle, the new shape was built as a shell around the original X-24A vehicle. Significantly, it was used for two landings on the main concrete runway at Edwards Air Force Base, demonstrating that accurate unpowered re-entry vehicle landings were operationally feasible. Following its retirement in 1975, the X-24B was placed on display in the National Museum of the U.S. Air Force at Wright-Patterson Air Force Base, Ohio. Photo Description The X-24B is seen in flight over the high desert. NASA Photo |
Date |
1/5/09 |
|
X-43A
NASA made aviation history w
1/5/09
Description |
NASA made aviation history with the first and second successful flights of an X-43A scramjet-powered airplane at hypersonic speeds - speeds greater than Mach 5, or five times the speed of sound. Compared to a rocket-powered vehicle like the space shuttle, vehicles powered by scramjet (supersonic combustion ramjet) engines promise more airplane-like operations for increased affordability, flexibility and safety on ultra-high-speed flights within the atmosphere and into Earth orbit. Because they do not have to contain their own oxidizer, as rockets must, vehicles powered by air-breathing scramjets can be smaller and lighter - or be the same size but carry a larger payload. No vehicle powered by an air-breathing engine had ever flown at hypersonic speeds before the successful March 2004 X-43A flight that collected the first data from a scramjet engine in flight. In addition, the rocket boost and subsequent separation from the rocket to get to the scramjet test condition had complex components that had to work properly if the mission was to succeed. Careful analyses and design were applied to reduce risks to acceptable levels though some level of residual risk was inherent to the program. Three unpiloted X-43A research aircraft were built. Each of the 12-foot-long, 5-foot-wide vehicles was designed to fly once and not be recovered. They were identical in appearance, but engineered with differences relating to their designed Mach speed. The first and second vehicles were designed to fly at Mach 7 and the third at Mach 10. At these speeds, the shape of the vehicle forebody compresses the air entering the scramjet. Fuel is then injected for combustion. Gaseous hydrogen fueled the X-43A. After the first flight attempt, in June of 2001, failed when the booster rocket went out of control, the second and third attempts resulted in highly successful, record-breaking flights. Mach 6.8 was reached in March of 2004, and Mach 9.6 was reached in the final flight in November of 2004. Both flights began with the combined test vehicle/rocket "stack" being carried by a B-52B aircraft from Dryden to a predetermined point over the Pacific Ocean, 50 miles west of the Southern California coast. Release altitude from the B-52B was 40,000 feet for both successful flights. At that point, each stack was dropped from the B-52B, and the booster lifted each research vehicle to its test altitude and speed. Guinness World Records has recognized both the Mach 6.8 and Mach 9.6 accomplishments. Photo Description A modified Pegasus rocket ignites moments after release from the NB-52B, beginning the acceleration of the X-43A over the Pacific Ocean on March 27, 2004. NASA Photo by Jim Ross |
Date |
1/5/09 |
|
Pegasus Rocket Model
Title |
Pegasus Rocket Model |
Description |
A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1996 |
|
M2-F3 cockpit instrument pan
Title |
M2-F3 cockpit instrument panel |
Description |
This photo shows the cockpit instrument panel of the M2-F3 Lifting Body. A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC'sM2-F1 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ]program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the help and cooperation of the FRC and redesignated theM2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Date |
01.01.1970 |
|
Pegasus Mated under Wing of
Title |
Pegasus Mated under Wing of B-52 Mothership - Close-up |
Description |
A close-up view of the Pegasus space-booster attached to the wing pylon of NASA's B-52 launch aircraft at NASA's Dryden Flight Research Center, Edwards, California. The Pegasus rocket booster was designed as a way to get small payloads into space orbit more easily and cost-effectively. It has also been used to gather data on hypersonic flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There, is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1994 |
|
PHYSX Glove Test
Title |
PHYSX Glove Test |
Description |
A mock-up of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental "glove" undergoes hot-loads tests at NASA's Dryden Flight Research Center, Edwards, California. The thermal ground test simulates heats and pressures the wing glove will experience at hypersonic speeds. Quartz heat lamps subject this model of a Pegasus booster rocket's right wing glove to the extreme heats it will experience at speeds approaching Mach 8. The glove has a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experimental flight. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft, launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1995 |
|
Lifting body pilots - Jerry
Title |
Lifting body pilots - Jerry Gentry, John Manke, Bill Dana, Cecil Powell with M2-F3 in background |
Description |
Posing for this photo in front of the M2-F3 are (Left-Right) Air Force pilot Captain Jerauld Gentry, NASA pilots John Manke and William H. Dana. Kneeling is Air Force pilot Major Cecil Powell. These four pilots flew the M2-F3 on a total of 27 flights between June 2, 1970 and December 20, 1972. The vehicle reached a maximum altitude of 71,500 feet and a maximum speed of Mach 1.613. Dana joined the National Aeronautics and Space Administration's High-Speed Flight Station On October 1, 1958 (the birthday of NASA). As a research pilot, he was involved in some of the most significant aeronautical programs carried out at the Center. In the late 1960s and in the 1970s Dana was a project pilot on the lifting body program which flew several versions of the wingless vehicles and produced data that helped in development of the Space Shuttle. For his contributions to the lifting body program, Dana received the NASA Exceptional Service Medal. In 1976 he received the Haley Space Flight Award from the American Institute of Aeronautics and Astronautics for his research work on the M2-F3 lifting body control systems. In 1993 Dana became Chief Engineer at NASA's Dryden Flight Research Center. He has authored several technical papers and is a member of The Society of Experimental Test Pilots. He retired on May 29, 1998. John joined the National Aeronautics and Space Administration's Flight Research Center in 1962 as a research engineer and later became a research pilot, testing advanced craft such as the wingless lifting bodies, forerunners of the Space Shuttle. He was project pilot on the X-24B and also flew the HL-10, M2-F3, and X-24A lifting bodies. John made the first supersonic flight of a lifting body and the first landing of a lifting body on a hard surface runway. Manke served as Director of the Flight Operations and Support Directorate at the Dryden Flight Research Center prior to its integration with Ames Research Center in October 1981. After this date John was named to head the joint Ames-Dryden Directorate of Flight Operations. He also served as site manager of the NASA Ames-Dryden Flight Research Facility. John is a member of the Society of Experimental Test Pilots. He retired on April 27, 1984. A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC'sM2-F1 [, http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ]program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the help and cooperation of the FRC and redesignated theM2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Date |
01.01.1971 |
|
X-38
One of NASA's three X-38 Cre
11/4/09
Description |
One of NASA's three X-38 Crew Return Vehicle technology demonstrators that flew at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif., a decade ago has found a new home in America's heartland. In this image from test flights in 1999, the X-38 research vehicle drops away from NASA's B-52 mothership immediately after being released from the B-52's wing pylon. More than 30 years earlier, this same B-52 launched the original lifting-body vehicles flight tested by NASA and the Air Force at what is now called the Dryden Flight Research Center and the Air Force Flight Test Center. The wingless lifting body craft was transferred this past weekend from NASA's Johnson Space Center in Houston to the Strategic Air and Space Museum, located just off Interstate 80 at Ashland, Neb., about 20 miles southeast of Omaha. The X-38 adds to the museum's growing collection of aerospace vehicles and other historical artifacts. The move of the second X-38 built to the museum has a fitting connection, as the X-38 vehicles were air-launched from NASA's famous B-52B 008 mothership. The B-52 bomber served as the backbone of the Air Force's Strategic Air Command during the command's history. Prior to cancellation, the X-38 program was developing the technology for proposed vehicles that could return up to seven International Space Station crewmembers to Earth in case of an emergency. These vehicles would have been carried to the space station in the cargo bay of a space shuttle and attached to station docking ports. If an emergency arose that forced the ISS crew to leave the space station, a Crew Return Vehicle would have undocked and returned them to Earth much like the space shuttle, although the vehicle would have deployed a parafoil for the final descent and landing. Photo Credit: NASA/Carla Thomas |
Date |
11/4/09 |
|
M2-F3 on lakebed
Title |
M2-F3 on lakebed |
Description |
December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. Pilots/Flights Bill Dana - 4 glide flights,15 powered flights Captain Jerry Gentry - 1 glide flight, 0 powered flights John Manke - 0 glide flights, 4 powered flights Major Cecil Powell - 0 glide flights, 3 powered flights, The M2-F3 Lifting Body is seen here on the lakebed next to the NASA Flight Research Center (later the Dryden Flight Research Center), Edwards, California. Redesigned and rebuilt from the M2-F2, the M2-F3 featured as its most visible change a center fin for greater stability. While the M2-F3 was still demanding to fly, the center fin eliminated the high risk of pilot induced oscillation (PIO) that was characteristic of the M2-F2. A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC'sM2-F1 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ]program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the cooperation of the FRC and redesignated theM2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated The M2-F3 vehicle to the Smithsonian Institute in |
Date |
01.01.1970 |
|
M2-F3 on lakebed
Title |
M2-F3 on lakebed |
Description |
The M2-F3 Lifting Body is seen here on the lakebed at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California. After a three-year-long redesign and rebuilding effort, the M2-F3 was ready to fly. The May 1967 crash of the M2-F2 had damaged both the external skin and the internal structure of the lifting body. At first, it seemed that the vehicle had been irreparably damaged, but the original manufacturer, Northrop, did the repair work and returned the redesigned M2-F3 with a center fin for stability to the FRC. A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC'sM2-F1 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ]program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the cooperation of the FRC and redesignated theM2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle, answered many of the generic questions about these vehicles. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Date |
01.01.1970 |
|
Desert Layover
Space shuttle Discovery is p
9/22/09
Description |
Space shuttle Discovery is parked within the Mate-Demate Device gantry at NASA's Dryden Flight Research Cener prior to beginning turnaround processing for its ferry flight back to the Kennedy Space Center in Florida. Discoloration on Discovery's reinforced carbon-carbon nose cap gives evidence of the extreme heating it encountered during re-entry into the Earth' atmosphere prior to landing on Sept. 11, 2009, at Edwards Air Force Base in California. Image Credit: NASA/Tony Landis |
Date |
9/22/09 |
|
Computer graphic of Lockheed
Title |
Computer graphic of Lockheed Martin Venturestar Reusable Launch Vehicle (RLV) releasing a satellite |
Description |
This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) releasing a satellite into orbit around the earth. NASA's Dryden Flight Research Center, Edwards, California, was to play a key role in the development and flight testing of the X-33, which is a technology demonstrator vehicle for the RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that were to improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology, Ames Research Center, Mountain View, CA., thermal protection system testing, Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis, and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama, Engineering & Science Services, Houston, Texas, Manned Space Systems, New Orleans, LA, Sanders, Nashua, NH, and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California, Allied Signal Aerospace, Teterboro, NJ, Rohr, Inc., Chula Vista, California, and Sverdrup Inc., St. Louis, Missouri. |
Date |
01.01.1997 |
|
X-24B in flight and landing
Title |
X-24B in flight and landing |
Description |
A fleet of lifting bodies flown at the NASA Flight Research Center, Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver (in the atmosphere) and safely land a wingless vehicle. These lifting bodies were basically designed so they could fly back to Earth from space and be landed like an aircraft at a pre-determined site. (In 1976 NASA renamed the FRC as the NASA Dryden Flight Research Center in honor of Hugh L. Dryden.) In 1962, FRC Director Paul Bikle approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a "flying bathtub," and was designated the M2-F1. It featured a plywood shell, built by Gus Briegleb (a seaplane builder from El Mirage, California) which was placed over a tubular steel frame crafted at the Flight Research Center. Construction was completed in 1963. The success of the Flight Research Center M2-F1 program led to NASA development and construction of two heavyweight lifting bodies based on studies at NASA Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, Hawthorne, California. The Air Force also became interested in lifting body research and had a third design concept, the X-24A, built by the Martin Company, Denver, Colorado. It was later modified into the X-24B and both configurations were flown in the joint NASA-Air Force lifting body program located at Dryden. The X-24B design evolved from a family of potential reentry shapes, each with higher lift-to-drag ratios, proposed by the Air Force Flight Dynamics Laboratory. To reduce the costs of constructing a research vehicle, the Air Force returned the X-24A to Martin for modifications that converted its bulbous shape into one resembling a "flying flatiron"--rounded top, flat bottom, and a double-delta planform that ended in a pointed nose. First to fly the X-24B was NASA research pilot John Manke, a glide flight on August 1, 1973. He was also the pilot on the first powered mission November 15, 1973. Among the final flights with the X-24B were two precise landings on the main concrete runway at Edwards, which showed that accurate unpowered reentry vehicle landings were operationally feasible. These missions were flown by Manke and Air Force Major Mike Love and represented the final milestone in a program that helped write the flight plan for today's Space Shuttle program. After launch from the B-52 "mothership" at an altitude of about 45,000 feet, the XLR-11 rocket engine was ignited and the vehicle accelerated to speeds of more than 1,100 miles per hour and to altitudes of 60,000 to 70,000 feet. After the rocket engine was shut down, the pilots began steep glides towards the Edwards runway. As the pilots entered the final leg of the approach, they increased their rate of descent to build up speed and used this energy to perform a "flare out" maneuver, which would slow their landing speed to about 200 miles per, hour--the same basic approach pattern and landing speed of the current Space Shuttles. The final powered flight with the X-24B aircraft was on September 23, l975. The pilot was Bill Dana, and it was the last rocket-powered flight flown at Dryden. It was also Dana who flew the last X-15 mission about seven years earlier. Top speed reached with the X-24B was 1,164 miles per hour (Mach 1.76) by Love on October 25, 1974. The highest altitude reached was 74,100 feet, by Manke on May 22, 1975. The X-24B is on public display at the Air Force Museum, Wright-Patterson AFB, Ohio. This 25-second video clip shows the X-24B attached to its pylon under the B-52 wing, then shifts to a landing followed by the chase aircraft. |
Date |
01.01.1974 |
|
X-24B launch - air drop from
Title |
X-24B launch - air drop from mothership |
Description |
A fleet of lifting bodies flown at the NASA Flight Research Center, Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver (in the atmosphere) and safely land a wingless vehicle. These lifting bodies were basically designed so they could fly back to Earth from space and be landed like an aircraft at a pre-determined site. (In 1976 NASA renamed the FRC as the NASA Dryden Flight Research Center in honor of Hugh L. Dryden.) In 1962, FRC Director Paul Bikle approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a "flying bathtub," and was designated the M2-F1. It featured a plywood shell, built by Gus Briegleb (a sailplane builder from El Mirage, California) placed over a tubular steel frame crafted at the FRC. Construction was completed in 1963. The success of the Flight Research Center M2-F1 program led to NASA development and construction of two heavyweight lifting bodies based on studies at the NASA Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, Hawthorne, California. The Air Force also became interested in lifting body research and had a third design concept built, the X-24A, built by the Martin Company, Denver, Colorado. It was later modified into the X-24B and both configurations were flown in the joint NASA-Air Force lifting body program located at Dryden. The X-24B design evolved from a family of potential reentry shapes, each with higher lift-to-drag ratios, proposed by the Air Force Flight Dynamics Laboratory. To reduce the costs of constructing a research vehicle, the Air Force returned the X-24A to Martin for modifications that converted its bulbous shape into one resembling a "flying flatiron" -- rounded top, flat bottom, and a double-delta planform that ended in a pointed nose. First to fly the X-24B was John A. Manke, a glide flight on August 1, 1973. He was also the pilot on the first powered mission November 15, 1973. Among the final flights with the X-24B were two precise landings on the main concrete runway at Edwards, California, which showed that accurate unpowered reentry vehicle landings were operationally feasible. These missions were flown by Manke and Air Force Maj. Mike Love and represented the final milestone in a program that helped write the flight plan for the Space Shuttle program of today. After launch from the B-52 "mothership" at an altitude of about 45,000 feet, the XLR-11 rocket engine was ignited and the vehicle accelerated to speeds of more than 1,100 miles per hour and to altitudes of 60,000 to 70,000 feet. After the rocket engine was shut down, the pilots began steep glides towards the Edwards runway. As the pilots entered the final leg of their approach, they increased their rate of descent to build up speed and used this energy to perform a "flare out" maneuver, which slowed their landing speed to about 200 miles per hour--the same basic, approach pattern and landing speed of the Space Shuttles today. The final powered flight with the X-24B aircraft was on September 23, l975. The pilot was Bill Dana, and it was also the last rocket-powered flight flown at Dryden. It was also Dana who flew the last X-15 mission about seven years earlier. Top speed reached with the X-24B was 1,164 miles per hour (Mach 1.76) by Love on October 25, 1974. The highest altitude reached was 74,100 feet, by Manke on May 22, 1975. The X-24B is on public display at the Air Force Museum, Wright-Patterson AFB, Ohio. This roughly 20-second video clip shows the X-24B dropping from the B-52 mothership, after which the rocket engine ignites. |
Date |
01.01.1974 |
|
Close-up of Pegasus Rocket W
Title |
Close-up of Pegasus Rocket Wing and PHYSX Glove Experiment |
Description |
This close-up view of the stainless-steel Pegasus Hypersonic Experiment (PHYSX) Projects experimental "glove" shows a highly reflective surface, underneath which are hundreds of temperature and pressure sensors that will send hypersonic flight data to ground tracking facilities during the experiment's flight. The glove and the Pegasus rocket wing it is attached to were load-tested at Scaled Composites, Inc., in Mojave, California, in January 1997. The Pegasus wing with attached PHYSX glove was placed in a wooden triangular test-rig, mounted to the floor atop the waterbags. Technicians slowly filled water bags beneath the wing, applying the pressure, or "wing-loading," required to determine whether the wing could withstand its design limit for stress. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus, airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1997 |
|
Pegasus Engine Ignites after
Title |
Pegasus Engine Ignites after Drop from B-52 Mothership |
Description |
Against the midnight blue of a high-altitude sky, Orbital Sciences' Pegasus winged rocket booster ignites after being dropped from NASA's B-52 mothership on a July 1991 flight. A NASA chase plane for the flight is also visible above the rocket and below the B-52. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never, launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
07.17.1991 |
|
Pegasus Rocket Wing and PHYS
Title |
Pegasus Rocket Wing and PHYSX Glove Being Prepared for Stress Loads Testing |
Description |
A technician adjusts the Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove before a loads-test at Scaled Composites, Inc., in Mojave, California, in January 1997. For the test, technicians slowly filled water bags beneath the wing to create the pressure, or "wing-loading," required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. PHYSX was launched aboard a Pegasus rocket on October 22, 1998. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound, payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1997 |
|
Pegasus Rocket Wing and PHYS
Title |
Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing |
Description |
The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or "wing-loading," required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially, later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California, Goddard Space Flight Center, Greenbelt, Maryland, and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable data on aerodynamics. By conducting experiments in a piggyback mode on Pegasus, some critical and secondary design and development issues were addressed at hypersonic speeds. The vehicle was also used to develop hypersonic flight instrumentation and test techniques. NASA's B-52 carrier-launch vehicle was used to get the Pegasus airborne during six launches from 1990 to 1994. Thereafter, an Orbital Sciences L-1011 aircraft launched the Pegasus. The Pegasus launch vehicle itself has a 400- to 600-pound payload capacity in a 61-cubic-foot payload space at the front of the vehicle. The vehicle is, capable of placing a payload into low earth orbit. This vehicle is 49 feet long and 50 inches in diameter. It has a wing span of 22 feet. (There is also a Pegasus XL vehicle that was introduced in 1994. Dryden has never launched one of these vehicles, but they have greater thrust and are 56 feet long.) |
Date |
01.01.1997 |
|
M2-F3 on lakebed
Title |
M2-F3 on lakebed |
Description |
The M2-F3 Lifting Body is seen here on the lakebed next to the NASA Flight Research Center (FRC--laterDryden Flight Research Center), Edwards, California. The May 1967 crash of the M2-F2 had torn off the left fin and landing gear. It had also damaged the external skin and internal structure. Flight Research Center engineers worked with Ames Research Center and the Air Force in redesigning the vehicle with a center fin to provide greater stability. Then Northrop Corporation cooperated with the FRC in rebuilding the vehicle. The entire process took three years. A fleet of lifting bodies flown at the NASA Flight Research Center (FRC--later the Dryden Flight Research Center), Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of the FRC'sM2-F1 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ]program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt by the Northrop Corporation with the help and cooperation of the FRC and redesignated theM2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a, research test vehicle answered many of the generic questions about these vehicles. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Date |
01.01.1970 |
|
M2-F1 and M2-F2 lifting bodi
Title |
M2-F1 and M2-F2 lifting bodies on ramp |
Description |
After the M2-F1 (on the viewer's left) proved the lifting-body concept, NASA and the Air Force began work on a series of heavyweight, rocket-powered lifting bodies able to reach supersonic speeds and altitudes up to 90,000 feet. The M2-F2 (on the right) was the first of these heavyweights. Although the two lifting bodies had similar shapes, there were differences. These included the "elephant ears" on the M2-F1, the change in cockpit location between the two vehicles, and the retractable landing gear on the M2-F2 versus the fixed gear on the M2-F1. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a "flying bathtub," and was designated the M2-F1, the "M" referring to "manned" and "F" referring to "flight" version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter "Whitey" Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden "Bud" Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47 aircraft and released. These initial car-tow tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. A small solid landing rocket, referred to as the "instant L/D rocket," was installed in the rear base of the M2-F1. This rocket, which could be ignited by the pilot, provided about 250 pounds of thrust for about 10 seconds. The rocket could be used to extend the, flight time near landing if needed. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, and the U.S. Air Force's X-24 program, with an X-24A and -B built by Martin. The Lifting Body program also heavily influenced the Space Shuttle program. The M2-F1 program demonstrated the feasibility of the lifting body concept for horizontal landings of atmospheric entry vehicles. It also demonstrated a procurement and management concept for prototype flight test vehicles that produced rapid results at very low cost (approximately $50,000, excluding salaries of government employees assigned to the project). A fleet of lifting bodies flown at the NASA Dryden Flight Research Center, Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Aerodynamic lift--essential to flight in the atmosphere--was obtained from the shape of their bodies. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. The information the lifting body program generated contributed to the data base that led to development of today's space shuttle program. The success of Dryden'sM2-F1 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F1/index.html ]program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2--which looked much like the "F1"--was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52s used to air launch the famed X-15 rocket research aircraft were modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation (control) system. When the M2-F2 was rebuilt at Dryden and redesignated theM2-F3 [ http://www.dfrc.nasa.gov/gallery/photo/M2-F3/index.html ], it was modified with an additional third vertical fin--centered between the tip fins--to, improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration (i.e., configured for re-entry to the atmosphere from space) lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969. |
Date |
01.01.1966 |
|
X-38: Artist Concept of Re-E
Title |
X-38: Artist Concept of Re-Entering Earth's Atmosphere |
Description |
This is an artist's depiction of NASA's proposed Crew Return Vehicle (CRV) re-entering the earth's atmosphere. A team of NASA researchers began free flight tests of the X-38, a technology demonstrator for the CRV, at NASA's Dryden Flight Research Center, Edwards, California, in 1998. The CRV is being designed as a "lifeboat" for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system, and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
01.01.1997 |
|
NASA TV's This Week @NASA, J
The three crew members of Ex
06/04/10
Description |
The three crew members of Expedition 23 made a safe return to Earth after their Soyuz flight from the International Space Station.* The Glenn Research Center hosted Ohio Governor Ted Strickland, Ohio Senator Sherrod Brown and other VIPs at several gatherings to underscore the center's contributions to the state and nation.* As this year's hurricane season gets underway, the Goddard Space Flight Center has unveiled, for the media, NASA's new climate simulation center.* Space is the focus of this year's World Science Festival in New York. * Four student teams representing high schools in Virginia, Pennsylvania, Utah, and North Carolina were at the Glenn Research Center to compete in NASA's Balloonsat High Altitude Flight Days.* Officials representing Palmdale, the Dryden Flight Research Center and the AERO Institute participated in a rededication ceremony to mark the reopening of Dryden's Educator Resource and Visitor Center. |
Date |
06/04/10 |
|
Photo Description |
NASA Dryden crew chief Joe Kinn gives final checks to NASA's Ikhana, a civil version of the Predator B unmanned aircraft, prior to a morning checkout flight. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
Silhouetted by the morning sun, NASA's Ikhana, a civil version of the Predator B unmanned aircraft, is readied for flight By NASA Dryden crew chief Joe Kinn. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
X-38 Drop Model: Glides to E
Title |
X-38 Drop Model: Glides to Earth After Being Dropped from a Cessna |
Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for, internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
01.01.1995 |
|
X-38 Drop Model: Testing Par
Title |
X-38 Drop Model: Testing Parafoil Landing System during Drop Tests |
Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for, internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
01.01.1995 |
|
X-38 Drop Model: Used to Tes
Title |
X-38 Drop Model: Used to Test Parafoil Landing System during Drop Tests |
Description |
A 4-foot-long model of NASA's X-38, an experimental crew return vehicle, glides to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to Earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily "old" technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for, internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground. |
Date |
01.01.1995 |
|
Ikhana Initial Landing After
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
6/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots an d coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh test ed an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
6/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
6/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots an d coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh test ed an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
6/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
6/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots an d coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh test ed an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
6/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/9/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mellon University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/9/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
NASA MOSES LAKE DEMONSTRATIO
NASA's Human Robotic Systems
7/10/08
Description |
NASA's Human Robotic Systems Project, part of the agency's Exploration Technology Development Program, focused on human and robotic mobility systems for the moon, but also looked at communication and command and control systems that will connect the explorers with Earth and each other. The Moses Lake dunes provided a wide variety of soil consistencies and terrain that allowed the team to put prototype scout robots, rovers, cargo carriers, cranes and spacesuits through tests in a harsh and changing environment. The prototype tests will be used to inform developers of specific requirements needed in lunar surface support systems for the Constellation Program. The program is building the launch vehicles and spacecraft that will take a new generation of explorers to the moon, as well as lunar landers, habitats, life support systems, vehicles and robots to support them. A ground control team located thousands of miles away at Johnson operated the robots and coordinated the movements of the suited explorers. NASA's Ames Research Center in Moffett Field, Calif., tested two K10 rovers that surveyed simulated lunar landing sites and built topographic and panoramic 3-D terrain models. One rover used a ground-penetrating radar to assess subsurface structures. The other used a 3-D scanning laser system known as LIDAR to create topographic maps. The scout robots are designed to perform highly repetitive and long-duration tasks, such as site mapping and science reconnaissance.JPL tested two ATHLETE cargo-moving rovers. Each rover has six legs capable of rolling or walking over extremely rough or steep terrain. This will allow robotic or human missions on the surface of the moon to load, manipulate, deposit and transport payloads to desired sites. The team includes members from Johnson, Ames, Stanford University and The Boeing Co. of Chicago. NASA's Glenn Research Center in Cleveland, and Carnegie Mello n University of Pittsburgh tested an autonomous drilling rover that could be used to search for valuable resources under the lunar surface in the moon's polar regions. The team also includes members from Ames, Johnson, NASA's Kennedy Space Center, the Canadian Space Agency and the Centre for Advanced Technology Inc. in Sudbury, Ontario. |
Date |
7/10/08 |
|
Photo Description |
NASA's Ikhana unmanned science demonstration aircraft, a civil variant of General Atomics' Predator B, lifts off from Grey Butte airfield in Southern California. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
The bulging fairing atop the forward fuselage of NASA's Ikhana unmanned aircraft covers a variety of navigation, communications and science instruments. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
The narrow fuselage of NASA'S Ikhana unmanned science aircraft, a civil version of General Atomics' Predator B, is evident in this view from underneath. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
Bearing NASA tail number 870, NASA's Ikhana unmanned aircraft is a civil version of the Predator B designed for high-altitude, long-endurance science flights. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
Crew chief Joe Kinn gives NASA's Ikhana unmanned aircraft a final check during engine run-up prior to takeoff at General Atomics Aeronautical Systems' airfield. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
An efficient turboprop engine and large fuel capacity enable NASA's Ikhana unmanned aircraft to remain aloft for up to 30 hours on science or technology flights. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
Its white surfaces in contrast with the deep blue sky, NASA's Ikhana unmanned science and technology development aircraft soars over California's high desert. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
NASA's Ikhana, a civil variant of General Atomics' Predator B unmanned aircraft, takes to the sky for a morning checkout flight from the Grey Butte airfield. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
NASA's Ikhana unmanned science aircraft ground control station includes consoles for two pilots and positions for scientists and engineers along the side. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
NASA's Ikhana unmanned science demonstration aircraft, a civil variant of General Atomics' Predator B, lifts off from Grey Butte airfield in Southern California. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
Distinguished by its large nose payload bay, NASA's Ikhana unmanned aircraft does an engine run prior to takeoff from General Atomics' Grey Butte airfield. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
A small nose-mounted television camera enables pilots of NASA's Ikhana unmanned science aircraft to view the flight path ahead. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
Straight wings, a Y-tail and a pusher propeller distinguish NASA's Ikhana, a civil version of General Atomics Aeronautical system's Predator B unmanned aircraft. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
NASA's Ikhana unmanned long-endurance science aircraft, a civil variant of General Atomics' Predator B, takes to the sky over Southern California's high desert. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
Narrow wings, a Y-tail and rear engine layout distinguish NASA's Ikhana science aircraft, a civil variant of General Atomics' Predator B unmanned aircraft system. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the aircraft during the fall of 2006. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. |
Photo Date |
March 5, 2007 |
|
Photo Description |
An artist's conception of the X-37 Advanced Technology Demonstrator as it glides to a landing on earth. Its design features a rounded fuselage topped by an experiment bay, short, double delta wings (like those of the Shuttle orbiter), and two stabilizers (that form a V-shape) at the rear of the vehicle. |
Photo Date |
1999 |
|
Photo Description |
NASA's Ikhana unmanned science demonstration aircraft over the U.S. Borax mine, Boron, California, near the Dryden/Edwards Air Force Base complex. NASA took possession of the new aircraft in November, 2006, and it arrived at the NASA Dryden Flight Research Center at Edwards AFB, Calif., on June 23, 2007. |
Project Description |
A Predator B unmanned aircraft system has joined the inventory of research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Built by General Atomics Aeronautical Systems Inc. of San Diego, NASA took possession of the new aircraft in November, 2006, and it arrived at the NASA center at Edwards Air Force Base, Calif., on June 23, 2007. The aircraft has been given the Choctaw Nation name "Ikhana" (pronounced ee-kah-nah), which means intelligent, conscious or aware. Designed for long-endurance, high-altitude flight, Ikhana will be flown primarily on Earth science missions under the Earth Science Capability Demonstrations project at NASA Dryden. It will also be used for advanced aircraft systems research and technology development. As part of the Ikhana/Predator B acquisition, NASA also purchased a ground control station and satellite communication system for control of the aircraft and transmittal of research data. The ground control station is in a mobile trailer and, in addition to the pilot's "cockpit," includes computer workstations for scientists and engineers. All of the aircraft systems are mobile, making Ikhana ideal for remote studies. The aircraft has a wingspan of 66 feet and is 36 feet long. More than 400 pounds of sensors can be carried internally and over 2,000 pounds in external wing pods. Ikhana is powered by a Honeywell TPE 331-10T turbine engine and is capable of reaching altitudes well above 40,000 feet. This aircraft is the first production Predator B equipped with an upgraded digital electronic engine controller (DEEC) developed by Honeywell and GA-ASI that will make Ikhana five to 10 percent more fuel efficient. |
Photo Date |
June 23, 2007 |
|
Airborne images of the Willo
9/3/99
Date |
9/3/99 |
Description |
Airborne images of the Willow fire in Southern California's San Bernardino County, taken September 1 from a NASA ER-2 airplane, show the blaze in wavelengths that are not visible to the naked eye. This set of infrared snapshots, taken by the Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer, represents all of the infrared camera's 224 spectral channels, stacked in the image-cube format to depict the full AVIRIS measurement. The top and right panels show the full spectrum measured for each spatial element along the along the edge of the image. Spectroscopic or color analysis enables scientists to determine temperature variations, adjacent vegetation type and biomass, as well as the water content of leaves in the vegetation. These are important factors for understanding, controlling and extinguishing fires. AVIRIS was designed, built and is operated by the Jet Propulsion Laboratory for NASA's Earth Science Enterprise. Data collection are made possible by NASA's ER-2 aircraft, which is housed at the Dryden Research Center at Edwards Air Force Base, CA. JPL is a division of the California Institute of Technology, Pasadena, CA. ##### |
|
X-15A-2 and HL-10 parked on
Title |
X-15A-2 and HL-10 parked on NASA ramp |
Description |
The HL-10 is shown next to the X-15A-2 in 1966. Both aircraft later went on to set records. On October 3, 1967, the X-15A-2 reached a speed of Mach 6.7, which was the highest speed achieved by a piloted aircraft until the Space Shuttles far exceeded that speed in 1981 and afterwards. The HL-10 later became the fastest piloted lifting body when it flew at a speed of Mach 1.86 on February 18, 1970. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of "heavy" lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. "HL" stands for horizontal landing, and "10" refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle. The X-15 was a rocket-powered aircraft roughly 50 feet long with a wingspan of 22 feet in its original configuration. The no. 2 aircraft was later modified to become the X-15A-2. First flown in 1959, the three X-15 aircraft made a total of 199 flights. Flight maximums of 354,200 feet in altitude and a speed of 4,520 miles per hour were obtained. The final flight occurred on Oct. 24, 1968. The X-15 was manufactured by North American Aviation (NAA), now a division of Boeing after that firm acquired the Rockwell International Corporation into which NAA had evolved. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 12,295 pounds empty and, approximately 31,275 pounds at launch. The rocket engine, the XLR-99, was pilot-controlled and was capable of developing 57,000 pound of rated thrust and about 60,000 pounds of actual thrust. It was manufactured by the Reaction Motors Division of Thiokol Chemical Corp. Before that engine was installed, the aircraft was powered by two XLR-11 rocket engines. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the lower atmosphere, the X-15 used conventional aerodynamic controls such as vertical stabilizers to control yaw and horizontal stabilizers to control pitch when moving in synchronization, or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Eight hydrogen-peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Four of them on the wings (two on each wing) furnished roll control. Because the X-15 consumed a large amount of fuel, it was air launched from a B-52 aircraft at 45,000 feet and a speed of about 500 miles per hour. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 seconds of flight. The remainder of the normal 10- to 11-minute flight was without power and ended with a 200-mile-per-hour glide landing. Generally, one of two types of X-15 flight profiles was used--a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. |
Date |
01.01.1966 |
|
X-15A-2 and HL-10 parked on
Title |
X-15A-2 and HL-10 parked on NASA ramp |
Description |
Both the HL-10 and X-15A2, shown here parked beside one another on the NASA ramp in 1966, underwent modifications. The X-15 No. 2 had been damaged in a crash landing in November 1962. Subsequently, the fuselage was lengthened, and it was outfitted with two large drop tanks. These modifications allowed the X-15A-2 to reach the speed of Mach 6.7. On the HL-10, the stability problems that appeared on the first flight at the end of 1966 required a reshaping of the fins' leading edges to eliminate the separated airflow that was causing the unstable flight. By cambering the leading edges of the fins, the HL-10 team achieved attached flow and stable flight. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of "heavy" lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. "HL" stands for horizontal landing, and "10" refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle. The X-15 was a rocket-powered aircraft roughly 50 feet long with a wingspan of 22 feet in its original configuration. The no. 2 aircraft was later modified to become the X-15A-2. First flown in 1959, the three X-15 aircraft made a total of 199 flights. Flight maximums of 354,200 feet in altitude and a speed of 4,520 miles per hour were obtained. The final flight occurred on Oct. 24, 1968. The X-15 was manufactured by North American Aviation (NAA), now a division of Boeing after that firm acquired the Rockwell, International Corporation into which NAA had evolved. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 12,295 pounds empty and approximately 31,275 pounds at launch. The rocket engine, the XLR-99, was pilot-controlled and was capable of developing 57,000 pound of rated thrust and about 60,000 pounds of actual thrust. It was manufactured by the Reaction Motors Division of Thiokol Chemical Corp. Before that engine was installed, the aircraft was powered by two XLR-11 rocket engines. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the lower atmosphere, the X-15 used conventional aerodynamic controls such as vertical stabilizers to control yaw and horizontal stabilizers to control pitch when moving in synchronization, or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Eight hydrogen-peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Four of them on the wings (two on each wing) furnished roll control. Because the X-15 consumed a large amount of fuel, it was air launched from a B-52 aircraft at 45,000 feet and a speed of about 500 miles per hour. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 seconds of flight. The remainder of the normal 10- to 11-minute flight was without power and ended with a 200-mile-per-hour glide landing. Generally, one of two types of X-15 flight profiles was used--a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. |
Date |
01.01.1966 |
|
Altamaha River delta, Georgi
The history of sea islands i
3/2/01
Date |
3/2/01 |
Description |
The history of sea islands in the Altamaha River delta on the coast of Georgia is revealed in this image produced from data acquired by the Airborne Synthetic Aperture Radar (AIRSAR), developed and operated by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The outlines of long-lost plantation rice fields, canals, dikes and other inlets are clearly defined. Salt marshes are shown in red, while dense cypress and live oak tree canopies are seen in yellow-greens. Agricultural development of the Altamaha delta began soon after the founding of the Georgia Colony in 1733. About 25 plantations were located on the low-lying islands and shores by the 19th century, taking advantage of the rich alluvial flow and annual inundation of water required by some crops. The first major crop was indigo, when demand for that faded, rice and cotton took its place. A major storm in 1824 destroyed much of the town of Darien (upper right) and put many of the islands under 20 feet of water. The Civil War ended the plantation system, and many of the island plantations disappeared under heavy brush and new growth pine forests. Some were used as tree farms for paper and pulp industries, while the Butler Island (center left) plantation became a wildlife conservation site growing wild sea rice for migrating ducks and other water fowl. Margaret Mitchell is reputed to have used the former owner of the Butler Plantation as a basis for the Rhett Butler character in her novel "Gone With The Wind," taking the first name from Rhett's Island (lower right). These data were obtained during a 1994-95 campaign along the Georgia coast. AIRSAR's ability to detect vegetation canopy density, hydrological features and other topographic characteristics is a useful tool in landscape archaeology. AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. The analysis on the data shown was accomplished by Dr. Gary McKay, Department of Archaeology and Geography, and Ian Morrison, Department of Archaeology, both of the University of Edinburgh (Scotland). AIRSAR is part of NASA's Earth Enterprise program. JPL is managed by the California Institute of Technology, Pasadena. More information about AIRSAR is available at http://airsar.jpl.nasa.gov . Imaging radar information is at http://southport.jpl.nasa.gov . Dr. McKay's activities can be accessed at http://www.arcl.ed.ac.uk/arch.remotesense.index.html . |
|
|