|
Search Results: All Fields similar to 'Explorer' and What equal to 'Earth'
|
Printer Friendly |
The three men responsible fo
Description |
The three men responsible for the success of Explorer 1, America's first Earth satellite which was launched January 31, 1958. At left is Dr. W. H. Pickering, former director of JPL, which built and operated the satellite. Dr. James A. van Allen, center, of the State University of Iowa, designed and built the instrument on Explorer that discovered the radiation belts which circle the Earth. At right is the late Dr. Wernher von Braun, leader of the Army's Redstone Arsenal team which built the first stage Redstone rocket that launched Explorer 1. |
|
ISEE3-ICE
title |
ISEE3-ICE |
description |
Known as International Sun-Earth Explorer 3 and International Cometary Explorer, this spacecraft scored a number of firsts - including the first comet flyby. *Image Credit*: NASA |
|
Explorer I
Title |
Explorer I |
Explanation |
Inaugurating the era of space exploration [ http://www.hq.nasa.gov/office/pao/History/SP-4406/contents.html ] for the US, the First Explorer [ http://antwrp.gsfc.nasa.gov/apod/ap970518.html ] was launched [ http://newproducts.jpl.nasa.gov/calander/explorer1.html ] into Earth orbit forty years ago [ http://www.jpl.nasa.gov/releases/98/expl1rel.html ] (February 1, 1958) by the Army Ballistic Missle Agency [ http://www.redstone.army.mil/history/arspace/welcome.html ]. The Explorer I satellite [ http://history.msfc.nasa.gov/history/mm/lk_inst.html ] weighed about 30 pounds, was 6 feet long, 6 inches in diameter and consisted of batteries, transmitters, and scientific instrumentation [ http://www-spof.gsfc.nasa.gov/Education/wexp13.html ] built into the fourth stage of a Jupiter-C rocket. Foreshadowing NASA and the adventurous [ http://www.osf.hq.nasa.gov/history/explorer.html ] and successful Explorer Program [ http://msl.jpl.nasa.gov/Programs/explorer.html ], Explorer I bolstered national prestige in the wake of Sputnik [ http://antwrp.gsfc.nasa.gov/apod/ap970427.html ]. The satellite also contributed to a spectacular scientific bonanza - the discovery of Earth-girdling belts of magnetically trapped charged particles now known as the Van Allen Radiation Belts [ http://www-spof.gsfc.nasa.gov/Education/Iradbelt.html ]. |
|
Explorer 1 Architects
title |
Explorer 1 Architects |
date |
01.01.1958 |
description |
The three men responsible for the success of Explorer 1, America's first Earth satellite which was launched January 31, 1958. At left is Dr. William H. Pickering, former director of JPL, which built and operated the satellite. Dr. James A. van Allen, center, of the State University of Iowa, designed and built the instrument on Explorer that discovered the radiation belts which circle the Earth. At right is Dr. Wernher von Braun, leader of the Army's Redstone Arsenal team which built the first stage Redstone rocket that launched Explorer 1. |
|
The First Explorer
Title |
The First Explorer |
Explanation |
The first US spacecraft was Explorer 1 [ http://history.msfc.nasa.gov/history/mm/sect001.html#Explorer I ]. The cylindrical 30 pound satellite [ http://antwrp.gsfc.nasa.gov/apod/ap980213.html ] was launched (above) as the fourth stage of a Jupiter-C rocket (a modified US Army [ http://www.redstone.army.mil/history/firsts/firsts.html ] Redstone [ http://antwrp.gsfc.nasa.gov/apod/ap970406.html ] ballistic missile) and achieved orbit on January 31, 1958. Explorer I carried instrumentation [ http://history.msfc.nasa.gov/history/mm/lk_inst.html ] to measure internal and external temperatures, micrometeorite impacts, and an experiment designed by James A. Van Allen [ http://www.jamesvanallen.com/productionbiography.html ] to measure the density of electrons and ions in space. The measurements made by Van Allen's experiment led to an unexpected and startling discovery [ http://www-spof.gsfc.nasa.gov/Education/wexp13.html ] -- an earth-encircling belt of high energy electrons and ions trapped in the magnetosphere [ http://www-spof.gsfc.nasa.gov/Education/Intro.html ] now known as the Van Allen Belt [ http://es91-server1.msfc.nasa.gov/ssl/pad/sppb/MI/imagers.html ]. Explorer I ceased transmitting on February 28 of that year but remained in orbit until March of 1970. |
|
Explorer 1 During the Instal
Name of Image |
Explorer 1 During the Installation to Jupiter-C |
Date of Image |
1958-01-01 |
Full Description |
Explorer 1 satellite. This photo was taken during the installation of Explorer-1, the first United States' Earth-orbiting satellite, to its launch vehicle, Jupiter-C, in January 1958 |
|
Explanatory Image of the Fir
Title |
Explanatory Image of the First Explorer VI Picture of Earth |
Full Description |
The lined areas at the left represent a cloud-cover map, prepared from meteorology charts, which have been superimposed on a glove to show how the lighted area which the Explorer VI television scanner saw on August 14, 1959. |
Date |
08/14/1959 |
NASA Center |
Headquarters |
|
View of Explorer VII
Name of Image |
View of Explorer VII |
Date of Image |
1959-01-01 |
Full Description |
A Juno II launched an Explorer VII satellite on October 13, 1959. Explorer VII, with a total weight of 91.5 pounds, carried a scientific package for detecting micrometeors, measuring the Earth's radiation balance, and conducting other experiments. |
|
Dr. von Braun with the Front
Name of Image |
Dr. von Braun with the Front Page of the Huntsville Times |
Date of Image |
1963-01-01 |
Full Description |
Dr. von Braun is presented with the front page of the Huntsville Times arnouncing the launch of Explorer I, the first U.S. Earth satellite, which was boosted by the Jupiter-C launch vehicle developed by Army Ballistic Missile Agency (ABMA) under the direction of Dr. von Braun. The occasion was the fifth Anniversary of the Explorer I launch in January 1958. |
|
Stennis hosts Gulf Pine Coun
Tori Williams, of Brownie Gi
10/13/07
Description |
Tori Williams, of Brownie Girl Scout Troop 313, builds her own `stomp rocket' with the help of adult chaperone Pamela Cottrell. The two, of Gulfport, participated in NASA Brownie Day on Oct. 13 at Stennis Space Center. They were among nearly 200 members of Brownie Girl Scout Troops within the Gulf Pines Council who took part in the day of educational activities at SSC. Brownie Day used NASA curriculum support materials to teach about the sun and its significance in our solar system. In addition to building and launching their own model rockets, the girls toured the center's portable Starlab planetarium, viewed demonstrations about living and working in space, played games of `Moon Phasers' that teach about the rotation of the moon around the earth, made bracelets with ultraviolet-sensitive beads, and other activities that celebrated Earth's very own star. They also toured StenniSphere and were able to earn their Earth and Sky and Space Explorer `Try-Its.' |
Date |
10/13/07 |
|
High Above
On March 7, 1947, not long a
3/6/09
Description |
On March 7, 1947, not long after the end of World War II and years before Sputnik ushered in the space age, a group of soldiers and scientists in the New Mexico desert saw something new and wonderful in these grainy black-and-white-photos -- the first pictures of Earth as seen from altitude greater than 100 miles in space. Just the year before in 1946, scientists like John T. Mengel, a NASA pioneer who later oversaw the Vanguard Program, began experimenting with captured German V-2 rockets. Mengel conducted upper atmosphere experiments by launching the rockets into near-earth orbit. He designed and fabricated the first research nose shell to replace of the V-2 warhead and began placing cameras in the nose shell. Before the Small Steps Program began in 1946 using V-2 rockets to take images from space, the highest pictures ever taken of the Earth's surface were from the Explorer II balloon, which ascended 13.7 miles in 1935, high enough to discern the curvature of the Earth. The V-2 cameras reached more than five times that altitude and clearly showed the planet set against the blackness of space. When the movie frames were stitched together, the panoramas taken in the late 1940s covered a million square miles or more at a single glance. Image Credit: Johns Hopkins Applied Physics Laboratory |
Date |
3/6/09 |
|
COBE Satellite Marks 20th An
NASA's Cosmic Background Exp
11/18/09
Description |
NASA's Cosmic Background Explorer (COBE) satellite rocketed into Earth orbit on Nov. 18, 1989, and quickly revolutionized our understanding of the early cosmos. Developed and built at Goddard Space Flight Center in Greenbelt, Md., COBE precisely measured and mapped the oldest light in the universe -- the cosmic microwave background. For these results, COBE scientists John Mather, at Goddard, and George Smoot, at the University of California, Berkeley, shared the 2006 Nobel Prize in physics. The mission ushered cosmologists into a new era of precision measurements, paving the way for deeper exploration of the microwave background by NASA's ongoing WMAP mission and the European Space Agency's new Planck satellite. For more information, visit http://www.nasa.gov/topics/universe/features/cobe_20th.html. Image Credit: NASA |
Date |
11/18/09 |
|
The First Explorer
Title |
The First Explorer |
Explanation |
Fifty years ago (on January 31, 1958) the First Explorer [ http://www.nasa.gov/mission_pages/explorer/ ], was launched into Earth orbit [ http://www.redstone.army.mil/history/explorer/ welcome.html ] by the Army Ballistic Missile Agency. Inaugurating the era of space exploration for the United States, Explorer I [ http://history.nasa.gov/sputnik/expinfo.html ] was a thirty pound satellite that carried instruments to measure temperatures, and micrometeorite impacts, along with an experiment designed by James A. Van Allen [ http://history.nasa.gov/sputnik/vanallen.html ] to measure the density of electrons and ions in space. The measurements made by Van Allen's experiment led to an unexpected and startling discovery [ http://www.phy6.org/Education/wexp13.html ] -- an earth-encircling belt of high energy electrons and ions trapped in the magnetosphere [ http://www.phy6.org/Education/Intro.html ] now known as the Van Allen Radiation Belt [ http://www.phy6.org/Education/wradbelt.html ]. Explorer I ceased transmitting on February 28, 1958, but remained in orbit until March of 1970. Pioneering space scientist James Van Allen [ http://www.nasa.gov/vision/universe/features/ james_van_allen.html ] died on August 9th, 2006 at the age of 91. |
|
Explorer XVII Satellite
Title |
Explorer XVII Satellite |
Full Description |
Weighing 405 lbs. (184 kg), this 35-inch (89-cm) pressurized stainless steel sphere measured the density, composition, pressure and temperature of Earth's atmosphere after its launch from Cape Canaveral on April 3, 1963. The mission was one of three that Goddard Space Flight Center specifically conducted to learn more about the atmosphere's physical properties?knowledge that they ultimately used for scientific and meteorological purposes. Explorer XVII carried two spectrometers, four vacuum pressure gauges and two electrostatic probes. Before it reached its intended orbit that ranged from 158 to 570 miles (254-917 km) above Earth, the satellite was spun up to about 90 rpm. |
Date |
01/01/1963 |
NASA Center |
Goddard Space Flight Center |
|
First Picture from Explorer
Title |
First Picture from Explorer VI Satellite |
Full Description |
This is the first crude picture obtained from Explorer VI Earth satellite launched August 7, 1959. It shows a sun-lighted area of the Central Pacific ocean and its cloud cover. The picture was made when the satellite was about 17,000 miles above the surface of the earth on August 14, 1959. At the time, the satellite was crossing Mexico. The signals were received at the South Point, Hawaii, tracking station. |
Date |
08/14/1959 |
NASA Center |
Headquarters |
|
Galaxy Centaurus A
PIA04624
GALEX Telescope
Title |
Galaxy Centaurus A |
Original Caption Released with Image |
This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France. |
|
The First Explorer
Title |
The First Explorer |
Explanation |
Inaugurating the era of space exploration for the US, the First Explorer [ http://www.hq.nasa.gov/office/pao/History/explorer.html ], a thirty pound satellite, was launched [ http://www.redstone.army.mil/history/explorer/welcome.html ] into Earth orbit on January 31, 1958 by the Army Ballistic Missile Agency. Explorer I [ http://history.nasa.gov/sputnik/expinfo.html ] carried instruments to measure temperatures, micrometeorite impacts, and an experiment designed by James A. Van Allen [ http://history.nasa.gov/sputnik/vanallen.html ] to measure the density of electrons and ions in space. The measurements made by Van Allen's experiment led to an unexpected and startling discovery [ http://www.phy6.org/Education/wexp13.html ] -- an earth-encircling belt of high energy electrons and ions trapped in the magnetosphere [ http://www.phy6.org/Education/Intro.html ] now known as the Van Allen Radiation Belt [ http://en.wikipedia.org/wiki/Van_Allen_radiation_belt ]. Explorer I ceased transmitting on February 28 of that year but remained in orbit until March of 1970. Pioneering astrophysicist James Van Allen [ http://www.nasa.gov/vision/universe/features/ james_van_allen.html ] died on August 9th at the age of 91. |
|
The Rite of Spring
Of the countless equinoxes S
10/15/09
Description |
Of the countless equinoxes Saturn has seen since the birth of the solar system, this one, captured in a mosaic of light and dark, is the first witnessed up close by an emissary from Earth Îÿ_Îÿ_Îÿ__€∆_ none other than our faithful robotic explorer, Cassini. Seen from our planet, the view of Saturn's rings during equinox is extremely foreshortened and limited. But in orbit around Saturn, Cassini had no such problems. From 20 degrees above the ring plane, Cassini's wide angle camera shot 75 exposures in succession for this mosaic showing Saturn, its rings and a few of its moons a day and a half after exact Saturn equinox, when the sun/s disk was exactly overhead at the planet's equator. The novel illumination geometry that accompanies equinox lowers the sun's angle to the ring plane, significantly darkens the rings, and causes out-of-plane structures to look anomalously bright and to cast shadows across the rings. These scenes are possible only during the few months before and after SaturnÎÿ_Îÿ_Îÿ__Îÿ__Îÿ_s equinox which occurs only once in about 15 Earth years. Also at equinox, the shadows of the planet's expansive rings are compressed into a single, narrow band cast onto the planet as seen in this mosaic. The images comprising the mosaic, taken over about eight hours, were extensively processed before being joined together. With no enhancement, the rings would be essentially invisible in this mosaic. To improve their visibility, the dark right half of the rings has been brightened relative to the brighter left half by a factor of three, and then the whole ring system has been brightened by a factor of 20 relative to the planet. So the dark half of the rings is 60 times brighter, and the bright half 20 times brighter, than they would have appeared if the entire system, planet included, could have been captured in a single image. The images were taken on Aug. 12, 2009, beginning about 1.25 days after exact equinox, using the red, green and blue spectral filters of the wide angle camera and were combined to create this natural color view. The images were obtained at a distance of approximately 526,000 miles from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 74 degrees. Image scale is 31 miles per pixel. Image Credit: NASA/JPL/Space Science Institute |
Date |
10/15/09 |
|
Surprise Ultraviolet Party i
PIA07251
GALEX Telescope
Title |
Surprise Ultraviolet Party in the Sky |
Original Caption Released with Image |
Galaxies aren't the only objects filling up the view of NASA's Galaxy Evolution Explorer. Since its launch in 2003, the space telescope -- originally designed to observe galaxies across the universe in ultraviolet light -- has discovered a festive sky blinking with flaring and erupting stars, as well as streaking asteroids, satellites and space debris. A group of six streaking objects -- the identities of which remain unknown -- can be seen here flying across the telescope's sight in this sped-up movie. The two brightest objects appear to perform a sharp turn then travel in the reverse direction. This illusion is most likely the result of the Galaxy Evolution Explorer overtaking the objects as it orbits around Earth. Careful inspection reveals four additional faint objects with the same timing and behavior. These faint objects are easiest to see during the retrograde portion of their paths. Three appear between the two bright sources, and one is above them, near the edge of the field of view. These bonus objects are being collected in to public catalogues for other astronomers to study. |
|
Galaxy UGC10445
PIA04623
GALEX Telescope
Title |
Galaxy UGC10445 |
Original Caption Released with Image |
This ultraviolet color image of the galaxy UGC10445 was taken by NASA's Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France. |
|
Galaxy NGC5962
PIA04635
GALEX Telescope
Title |
Galaxy NGC5962 |
Original Caption Released with Image |
NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France. |
|
Galaxy Messier 51
PIA04628
GALEX Telescope
Title |
Galaxy Messier 51 |
Original Caption Released with Image |
NASA's Galaxy Evolution Explorer took this image of the spiral galaxy Messier 51 on June 19 and 20, 2003. Messier 51 is located 27 million light-years from Earth. Due to a lack of star formation, the companion galaxy in the top of the picture is barely visible as a near ultraviolet object. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France. |
|
Galaxy Messier 83
PIA04629
GALEX Telescope
Title |
Galaxy Messier 83 |
Original Caption Released with Image |
This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France. |
|
Messier 101
PIA04631
GALEX Telescope
Title |
Messier 101 |
Original Caption Released with Image |
NASA's Galaxy Evolution Explorer took this near ultraviolet image of Messier 101 on June 20, 2003. Messier 101 is a large spiral galaxy located 20 million light-years from Earth. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France. |
|
Galaxy NGC5398
PIA04633
GALEX Telescope
Title |
Galaxy NGC5398 |
Original Caption Released with Image |
This is an ultraviolet color image of the galaxy NGC5398 taken by NASA's Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France. |
|
Galaxy NGC5474
PIA04634
GALEX Telescope
Title |
Galaxy NGC5474 |
Original Caption Released with Image |
NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France. |
|
Messier 101 Single Orbit Exp
PIA04632
GALEX Telescope
Title |
Messier 101 Single Orbit Exposure |
Original Caption Released with Image |
This single orbit exposure, ultraviolet color image of Messier 101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. Messier 101 is a large spiral galaxy located 20 million light-years from Earth. This image is a short and medium "exposure" picture of the evolution of star formation in a spiral galaxy. The far ultraviolet emission detects the younger stars as concentrated in tight spiral arms, while the near ultraviolet emission, which traces stars living for more than 100 million years, displays the movement of the spiral pattern over a 100 million year period. The red stars in the foreground of the image are Milky Way stars. The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France. |
|
M81 Galaxy is Pretty in Pink
PIA09579
GALEX Telescope, Infrared Ar
Title |
M81 Galaxy is Pretty in Pink |
Original Caption Released with Image |
The perfectly picturesque spiral galaxy known as Messier 81, or M81, looks sharp in this new composite from NASA's Spitzer and Hubble space telescopes and NASA's Galaxy Evolution Explorer. M81 is a "grand design" spiral galaxy, which means its elegant arms curl all the way down into its center. It is located about 12 million light-years away in the Ursa Major constellation and is one of the brightest galaxies that can be seen from Earth through telescopes. The colors in this picture represent a trio of light wavelengths: blue is ultraviolet light captured by the Galaxy Evolution Explorer, yellowish white is visible light seen by Hubble, and red is infrared light detected by Spitzer. The blue areas show the hottest, youngest stars, while the reddish-pink denotes lanes of dust that line the spiral arms. The orange center is made up of older stars. |
|
Ellen Weaver, Biologist
Title |
Ellen Weaver, Biologist |
Full Description |
Ellen Weaver, an associate professor of biology from California State University is shown developing instrumentation to be used in satellites for ocean monitoring. In the early 1970s, NASA researchers and ocean explorer Jacques Cousteau formed a team to study productivity of the sea. The team devised a sensor system to monitor ocean temperatures and chlorophyll levels by aircraft. This sensor was used in the satellite communication and weather equipment provided by NASA to assist in the accuracy of satellite observation. |
Date |
2/8/1973 |
NASA Center |
Headquarters |
|
Project Red Socks
title |
Project Red Socks |
date |
10.01.1957 |
description |
Project RED SOCKS was to be "the world's first useful moon rocket," proposed by the Jet Propulsion Laboratory/California Institute of Technology in October 1957. These artist's renditions show the configuration of motors and a diagram of the moon orbit. RED SOCKS was to respond to the Sputnik launch challenge with a significant technological advance over the Soviet Union instead of merely matching them with another earth-orbiting satellite. The objectives of the project were to "1) get photos, 2) refine space guidance techniques, and 3) impress the world" with a series of nine rocket flights to the moon. The second of the nine flights was to take pictures of the back of the moon. The necessary technology had already been developed for earlier projects, such as the Re-entry Test Vehicle and the Microlock radio ground tracking system. Project RED SOCKS received no support in Washington. In December 1957, JPL and the Army Ballistic Missile Agency (ABMA) were instead asked to orbit an Earth satellite. Explorer 1 was launched 81 days later, on January 29, 1958. A modified RED SOCKS plan was carried out in the Pioneer 4 project in March 1959. *Image Credit*: NASA Jet Propulsion Laboratory |
|
COBE's View of the Milky Way
Title |
COBE's View of the Milky Way |
Full Description |
From its orbit around Earth, the Goddard Space Flight Center's Cosmic Background Explorer (COBE) captured this edge-on view of our Milky Way galaxy in infrared light, a form of radiation that humans cannot see but can feel in the form of heat, as part of its mission to test the "Big Bang" theory of the creation of the universe. The theory, first proposed in 1927 by Belgian cosmologist Georges Lematre, holds that the universe began as an incredibly dense "primeval atom" that exploded with tremendous force, unleashing matter and space at the speeds of light. NASA set out to prove the theory with the help of COBE. In addition to proving the Big Bang, the satellite discovered that the cosmic background radiation had indeed been produced in the Big Bang just as scientists originally speculated. The satellite's data even discovered the primordial temperature and density fluctuations that eventually gave rise to the Milky Way and other large-scale objects found in space today. |
Date |
01/01/1990 |
NASA Center |
Goddard Space Flight Center |
|
SAMPEX - A Synoptic View of
Title |
SAMPEX - A Synoptic View of Earth's Electron Radiation Belts: North Pole Energetic Fluxes from PET |
Abstract |
The Solar Anomalous and Magnetospheric Particle Explorer, SAMPEX, measures fluxes of energetic particles from the sun, the Earth's magnetosphere, and cosmic ray sources over a broad range of energies. The four instruments aboard SAMPEX are the Low-Energy Ion Analyzer (LEICA), The Heavy Ion Large Telescope (HILT), The Mass Spectrometer Telescope (MAST), and the Proton-Electron Telescope (PET). |
Completed |
1995-01-01 |
|
SAMPEX - A Synoptic View of
Title |
SAMPEX - A Synoptic View of Earth's Electron Radiation Belts: North Pole Energetic Fluxes from HILT |
Abstract |
The Solar Anomalous and Magnetospheric Particle Explorer, SAMPEX, measures fluxes of energetic particles from the sun, the Earth's magnetosphere, and cosmic ray sources over a broad range of energies. The four instruments aboard SAMPEX are the Low-Energy Ion Analyzer (LEICA), The Heavy Ion Large Telescope (HILT), The Mass Spectrometer Telescope (MAST), and the Proton-Electron Telescope (PET). |
Completed |
1995-01-01 |
|
SAMPEX - A Synoptic View of
Title |
SAMPEX - A Synoptic View of Earth's Electron Radiation Belts: South Pole Energetic Fluxes from PET |
Abstract |
The Solar Anomalous and Magnetospheric Particle Explorer, SAMPEX, measures fluxes of energetic particles from the sun, the Earth's magnetosphere, and cosmic ray sources over a broad range of energies. The four instruments aboard SAMPEX are the Low-Energy Ion Analyzer (LEICA), The Heavy Ion Large Telescope (HILT), The Mass Spectrometer Telescope (MAST), and the Proton-Electron Telescope (PET). |
Completed |
1995-01-01 |
|
SAMPEX - A Synoptic View of
Title |
SAMPEX - A Synoptic View of Earth's Electron Radiation Belts: South Pole Energetic Fluxes from HILT |
Abstract |
The Solar Anomalous and Magnetospheric Particle Explorer, SAMPEX, measures fluxes of energetic particles from the sun, the Earth's magnetosphere, and cosmic ray sources over a broad range of energies. The four instruments aboard SAMPEX are the Low-Energy Ion Analyzer (LEICA), The Heavy Ion Large Telescope (HILT), The Mass Spectrometer Telescope (MAST), and the Proton-Electron Telescope (PET). |
Completed |
1995-01-01 |
|
A New Class of X-ray Star?
Title |
A New Class of X-ray Star? |
General Information |
What is an American Astronomical Society Meeting release? A major news announcement issued at an American Astronomical Society meeting, the premier astronomy conference. Teaming up space telescopes to make simultaneous ultraviolet and X-ray observations, astronomers may have solved a 20-year-old mystery and possibly discovered a new class of X-ray star. The unlikely suspect is a second-magnitude star 600 light-years from Earth in the constellation Cassiopeia. It turns out that the mild-mannered-looking star is ejecting 100-million-degree flares into space ? 10 times hotter than typical flares ejected from our Sun. The findings are based on observations by the Hubble telescope and the Rossi X-Ray Timing Explorer. Read more: * Release Text [ http://hubblesite.org/newscenter/archive/releases/1998/07/text/ ] |
|
COBE's View of the Milky Way
title |
COBE's View of the Milky Way |
date |
01.01.1990 |
description |
From its orbit around Earth, the Goddard Space Flight Center's Cosmic Background Explorer (COBE) captured this edge-on view of our Milky Way galaxy in infrared light, a form of radiation that humans cannot see but can feel in the form of heat, as part of its mission to test the "Big Bang" theory of the creation of the universe. The theory, first proposed in 1927 by Belgian cosmologist Georges Lematre, holds that the universe began as an incredibly dense "primeval atom" that exploded with tremendous force, unleashing matter and space at the speeds of light. NASA set out to prove the theory with the help of COBE. In addition to proving the Big Bang, the satellite discovered that the cosmic background radiation had indeed been produced in the Big Bang just as scientists originally speculated. The satellite's data even discovered the primordial temperature and density fluctuations that eventually gave rise to the Milky Way and other large-scale objects found in space today. *Image Credit*: NASA |
|
Dynamic Test Chamber
Title |
Dynamic Test Chamber |
Full Description |
NASA's International Sun-Earth Explorer C (ISEE C) was undergoing testing and evaluation inside Goddard's dynamic test chamber when this photo was taken. Working inside a dynamic test chamber, Goddard engineers wear protective "clean room" clothing to prevent microscopic dust particles from damaging the sophisticated instrumentation. NASA launched the 16-sided polyhedron, which weighed 1,032 lbs. (469 kg.), from Cape Canaveral, Florida, on August 12, 1978. From its halo orbit 932,000 miles (1.5 million km.) from Earth, the satellite monitored the characteristics of solar phenomena about one hour before its companion satellites-ISEE-A and ISEE-B-observed the same phenomena from a much closer near-Earth orbit. The correlated measurements supported the work of 117 scientific investigators who were trying to get a better understanding of how the Sun controls Earth's near-space environment. The scientists represented 35 universities in 10 nations |
Date |
11/06/1976 |
NASA Center |
Goddard Space Flight Center |
|
Multiwavelength M81
Title |
Multiwavelength M81 |
Description |
This beautiful galaxy is tilted at an oblique angle on to our line of sight, giving a "birds-eye view" of the spiral structure. The galaxy is similar to our Milky Way, but our favorable view provides a better picture of the typical architecture of spiral galaxies. M81 may be undergoing a surge of star formation along the spiral arms due to a close encounter it may have had with its nearby spiral galaxy NGC 3077 and a nearby starburst galaxy (M82) about 300 million years ago. M81 is one of the brightest galaxies that can be seen from the Earth. It is high in the northern sky in the circumpolar constellation Ursa Major, the Great Bear. At an apparent magnitude of 6.8 it is just at the limit of naked-eye visibility. The galaxy's angular size is about the same as that of the Full Moon. This image combines data from the Hubble Space Telescope, the Spitzer Space Telescope, and the Galaxy Evolution Explorer (GALEX) missions. The GALEX ultraviolet data were from the far-UV portion of the spectrum (135 to 175 nanometers). The Spitzer infrared data were taken with the IRAC 4 detector (8 microns). The Hubble data were taken at the blue portion of the spectrum. |
|
It's Not a Bird or a Plane
PIA07250
GALEX Telescope
Title |
It's Not a Bird or a Plane |
Original Caption Released with Image |
Galaxies aren't the only objects filling up the view of NASA's Galaxy Evolution Explorer. Since its launch in 2003, the space telescope -- originally designed to observe galaxies across the universe in ultraviolet light -- has discovered a festive sky blinking with flaring and erupting stars, as well as streaking asteroids, satellites and space debris. One such streaking object -- possibly an Earth-orbiting satellite -- can be seen here flying across the telescope's sight in this sped-up movie. This probable satellite appears during the last 5 minutes of a 13.5-minute observation. It looks elongated because each picture frame containing the moving object is 19 seconds long. Faint ghost images on either side of the source are detector artifacts caused by the object's extreme brightness. These bonus objects are being collected in to public catalogues for other astronomers to study. |
|
SAMPEX - Yohkoh: Solar Modif
Title |
SAMPEX - Yohkoh: Solar Modification of Relativistic Electrons in the Earth's Radiation Belts |
Abstract |
The Solar Anomalous and Magnetospheric Particle Explorer, SAMPEX, measures fluxes of energetic particles from the sun, the Earth's magnetosphere, and cosmic ray sources over a broad range of energies. The four instruments aboard SAMPEX are the Low-Energy Ion Analyzer (LEICA), The Heavy Ion Large Telescope (HILT), The Mass Spectrometer Telescope (MAST), and the Proton-Electron Telescope (PET). The Soft X-ray Telescope on the Yohkoh satellite takes daily full-disk soft X-ray images of the Sun. Comparing datasets from the two satellites allows correlation of electron fluxes in the Earth's radiation belts with solar output. |
Completed |
1995-11-07 |
|
A Real Shooting Star
PIA09960
Ultraviolet/Visible Camera
Title |
A Real Shooting Star |
Original Caption Released with Image |
"" Click on the image for movie of A Real Shooting Star This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for "wonderful," sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light. The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated, for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years. As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake. Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence. Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira and its "whale of a tail" can be found in the tail of the whale constellation. |
|
STS-30 Mission Insignia
Name of Image |
STS-30 Mission Insignia |
Date of Image |
1989-03-08 |
Full Description |
The STS-30 patch depicts the joining of NASA's manned and unmanned space programs. The sun and inner planets of our solar system are shown with the curve connecting Earth and Venus symbolizing the shuttle orbit, the spacecraft trajectory toward Venus, and its subsequent orbit around our sister planet. A Spanish caravel similar to the ship on the official Magellan program logo commemorates the 16th century explorer's journey and his legacy of adventure and discovery. Seven stars on the patch honor the crew of Challenger. The five-star cluster in the shape of the constellation Cassiopeia represent the five STS-30 crewmembers - Astronauts David Walker, Ronald Grabe, Norman Thagard, Mary Cleave and Mark Lee - who collectively designed the patch. |
|
Mira Soars Through the Sky
PIA09958
Ultraviolet/Visible Camera
Title |
Mira Soars Through the Sky |
Original Caption Released with Image |
New ultraviolet images from NASA's Galaxy Evolution Explorer shows a speeding star that is leaving an enormous trail of "seeds" for new solar systems. The star, named Mira (pronounced my-rah) after the latin word for "wonderful," is shedding material that will be recycled into new stars, planets and possibly even life as it hurls through our galaxy. In figure 1, the upper panel shows Mira's full, comet-like tail as seen only in shorter, or "far" ultraviolet wavelengths, while the lower panel is a combined view showing both far and longer, or "near" ultraviolet wavelengths. The close-up picture at bottom gives a better look at Mira itself, which appears as a pinkish dot, and is moving from left to right in this view. Shed material appears in light blue. The dots in the picture are stars and distant galaxies. The large blue dot on the left side of the upper panel, and the large yellow dot in the lower panel, are both stars that are closer to us than Mira. The Galaxy Evolution Explorer discovered the strange tail during part of its routine survey of the entire sky at ultraviolet wavelengths. When astronomers first saw the picture, they were shocked because Mira has been studied for over 400 years yet nothing like this has ever been documented before. Mira's comet-like tail stretches a startling 13 light-years across the sky. For comparison, the nearest star to our sun, Proxima Centauri, is only about 4 light-years away. Mira's tail also tells a tale of its history -- the material making it up has been slowly blown off over time, with the oldest material at the end of the tail being released about 30,000 years ago (figure 2). Mira is a highly evolved, "red giant" star near the end of its life. Technically, it is called an asymptotic giant branch star. It is red in color and bloated, for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. Our sun will mature into a red giant in about 5 billion years. Like other red giants, Mira will lose a large fraction of its mass in the form of gas and dust. In fact, Mira ejects the equivalent of the Earth's mass every 10 years. It has released enough material over the past 30,000 years to seed at least 3,000 Earth-sized planets or 9 Jupiter-sized ones. While most stars travel along together around the disk of our Milky Way, Mira is charging through it. Because Mira is not moving with the "pack," it is moving much faster relative to the ambient gas in our section of the Milky Way. It is zipping along at 130 kilometers per second, or 291,000 miles per hour, relative to this gas. Mira's breakneck speed together with its outflow of material are responsible for its unique glowing tail. Images from the Galaxy Evolution Explorer show a large build-up of gas, or bow shock, in front of the star, similar to water piling up in front of a speeding boat. Scientists now know that hot gas in this bow shock mixes with the cooler, hydrogen gas being shed from Mira,, causing it to heat up as it swirls back into a turbulent wake. As the hydrogen gas loses energy, it fluoresces with ultraviolet light, which the Galaxy Evolution Explorer can detect. Mira, also known as Mira A, is not alone in its travels through space. It has a distant companion star called Mira B that is thought to be the burnt-out, dead core of a star, called a white dwarf. Mira A and B circle around each other slowly, making one orbit about every 500 years. Astronomers believe that Mira B has no effect on Mira's tail. Mira is also what's called a pulsating variable star. It dims and brightens by a factor of 1,500 every 332 days, and will become bright enough to see with the naked eye in mid-November 2007. Because it was the first variable star with a regular period ever discovered, other stars of this type are often referred to as "Miras." Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira and its "whale of a tail" can be found in the tail of the whale constellation. These images were between November 18 and December 15, 2006. |
|
Mira Soars Through the Sky
PIA09958
Ultraviolet/Visible Camera
Title |
Mira Soars Through the Sky |
Original Caption Released with Image |
New ultraviolet images from NASA's Galaxy Evolution Explorer shows a speeding star that is leaving an enormous trail of "seeds" for new solar systems. The star, named Mira (pronounced my-rah) after the latin word for "wonderful," is shedding material that will be recycled into new stars, planets and possibly even life as it hurls through our galaxy. In figure 1, the upper panel shows Mira's full, comet-like tail as seen only in shorter, or "far" ultraviolet wavelengths, while the lower panel is a combined view showing both far and longer, or "near" ultraviolet wavelengths. The close-up picture at bottom gives a better look at Mira itself, which appears as a pinkish dot, and is moving from left to right in this view. Shed material appears in light blue. The dots in the picture are stars and distant galaxies. The large blue dot on the left side of the upper panel, and the large yellow dot in the lower panel, are both stars that are closer to us than Mira. The Galaxy Evolution Explorer discovered the strange tail during part of its routine survey of the entire sky at ultraviolet wavelengths. When astronomers first saw the picture, they were shocked because Mira has been studied for over 400 years yet nothing like this has ever been documented before. Mira's comet-like tail stretches a startling 13 light-years across the sky. For comparison, the nearest star to our sun, Proxima Centauri, is only about 4 light-years away. Mira's tail also tells a tale of its history -- the material making it up has been slowly blown off over time, with the oldest material at the end of the tail being released about 30,000 years ago (figure 2). Mira is a highly evolved, "red giant" star near the end of its life. Technically, it is called an asymptotic giant branch star. It is red in color and bloated, for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. Our sun will mature into a red giant in about 5 billion years. Like other red giants, Mira will lose a large fraction of its mass in the form of gas and dust. In fact, Mira ejects the equivalent of the Earth's mass every 10 years. It has released enough material over the past 30,000 years to seed at least 3,000 Earth-sized planets or 9 Jupiter-sized ones. While most stars travel along together around the disk of our Milky Way, Mira is charging through it. Because Mira is not moving with the "pack," it is moving much faster relative to the ambient gas in our section of the Milky Way. It is zipping along at 130 kilometers per second, or 291,000 miles per hour, relative to this gas. Mira's breakneck speed together with its outflow of material are responsible for its unique glowing tail. Images from the Galaxy Evolution Explorer show a large build-up of gas, or bow shock, in front of the star, similar to water piling up in front of a speeding boat. Scientists now know that hot gas in this bow shock mixes with the cooler, hydrogen gas being shed from Mira,, causing it to heat up as it swirls back into a turbulent wake. As the hydrogen gas loses energy, it fluoresces with ultraviolet light, which the Galaxy Evolution Explorer can detect. Mira, also known as Mira A, is not alone in its travels through space. It has a distant companion star called Mira B that is thought to be the burnt-out, dead core of a star, called a white dwarf. Mira A and B circle around each other slowly, making one orbit about every 500 years. Astronomers believe that Mira B has no effect on Mira's tail. Mira is also what's called a pulsating variable star. It dims and brightens by a factor of 1,500 every 332 days, and will become bright enough to see with the naked eye in mid-November 2007. Because it was the first variable star with a regular period ever discovered, other stars of this type are often referred to as "Miras." Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira and its "whale of a tail" can be found in the tail of the whale constellation. These images were between November 18 and December 15, 2006. |
|
Mira Soars Through the Sky
PIA09958
Ultraviolet/Visible Camera
Title |
Mira Soars Through the Sky |
Original Caption Released with Image |
New ultraviolet images from NASA's Galaxy Evolution Explorer shows a speeding star that is leaving an enormous trail of "seeds" for new solar systems. The star, named Mira (pronounced my-rah) after the latin word for "wonderful," is shedding material that will be recycled into new stars, planets and possibly even life as it hurls through our galaxy. In figure 1, the upper panel shows Mira's full, comet-like tail as seen only in shorter, or "far" ultraviolet wavelengths, while the lower panel is a combined view showing both far and longer, or "near" ultraviolet wavelengths. The close-up picture at bottom gives a better look at Mira itself, which appears as a pinkish dot, and is moving from left to right in this view. Shed material appears in light blue. The dots in the picture are stars and distant galaxies. The large blue dot on the left side of the upper panel, and the large yellow dot in the lower panel, are both stars that are closer to us than Mira. The Galaxy Evolution Explorer discovered the strange tail during part of its routine survey of the entire sky at ultraviolet wavelengths. When astronomers first saw the picture, they were shocked because Mira has been studied for over 400 years yet nothing like this has ever been documented before. Mira's comet-like tail stretches a startling 13 light-years across the sky. For comparison, the nearest star to our sun, Proxima Centauri, is only about 4 light-years away. Mira's tail also tells a tale of its history -- the material making it up has been slowly blown off over time, with the oldest material at the end of the tail being released about 30,000 years ago (figure 2). Mira is a highly evolved, "red giant" star near the end of its life. Technically, it is called an asymptotic giant branch star. It is red in color and bloated, for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. Our sun will mature into a red giant in about 5 billion years. Like other red giants, Mira will lose a large fraction of its mass in the form of gas and dust. In fact, Mira ejects the equivalent of the Earth's mass every 10 years. It has released enough material over the past 30,000 years to seed at least 3,000 Earth-sized planets or 9 Jupiter-sized ones. While most stars travel along together around the disk of our Milky Way, Mira is charging through it. Because Mira is not moving with the "pack," it is moving much faster relative to the ambient gas in our section of the Milky Way. It is zipping along at 130 kilometers per second, or 291,000 miles per hour, relative to this gas. Mira's breakneck speed together with its outflow of material are responsible for its unique glowing tail. Images from the Galaxy Evolution Explorer show a large build-up of gas, or bow shock, in front of the star, similar to water piling up in front of a speeding boat. Scientists now know that hot gas in this bow shock mixes with the cooler, hydrogen gas being shed from Mira,, causing it to heat up as it swirls back into a turbulent wake. As the hydrogen gas loses energy, it fluoresces with ultraviolet light, which the Galaxy Evolution Explorer can detect. Mira, also known as Mira A, is not alone in its travels through space. It has a distant companion star called Mira B that is thought to be the burnt-out, dead core of a star, called a white dwarf. Mira A and B circle around each other slowly, making one orbit about every 500 years. Astronomers believe that Mira B has no effect on Mira's tail. Mira is also what's called a pulsating variable star. It dims and brightens by a factor of 1,500 every 332 days, and will become bright enough to see with the naked eye in mid-November 2007. Because it was the first variable star with a regular period ever discovered, other stars of this type are often referred to as "Miras." Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira and its "whale of a tail" can be found in the tail of the whale constellation. These images were between November 18 and December 15, 2006. |
|
A World Explorer
Title |
A World Explorer |
Explanation |
Ferdinand Magellan [ http://www.nortel.com/english/magellan/ferdinand/MagellanBio.html ] was a world explorer. Many consider him the greatest navigator of Europe's 16th century age of sea going exploration and credit his expedition with the first circumnavigation of planet Earth. NASA's Venus probe, the aptly named Magellan spacecraft [ http://nssdc.gsfc.nasa.gov/planetary/magellan.html ] shown above in an artist's conception, provided a global view of the poorly known surface of Venus [ http://antwrp.gsfc.nasa.gov/apod/ap950822.html ] - just as Magellan's expedition provided the beginnings of a global perspective of the Earth. Ferdinand Magellan's expedition of 5 ships and 265 men left Spain in 1519 in search of a western route to the Spice Islands of Indonesia. [ http://eduserv.rug.ac.be/~mbagus/ina.html ] In 1522 one ship and 17 men returned. NASA launched the Magellan probe on May 4, 1989. Placed in a polar orbit, Magellan's many circumnavigations resulted in a detailed radar mapping of 98% of the Venusian surface. [ http://www.jpl.nasa.gov/releases/mgnlpsc.html ] As pictured, the radar mapper's antenna resembles a large inverted bowl. Power for the radar was produced by the wing like solar panels. In October of 1994, the Magellan probe entered the Venusian atmosphere and ground controllers lost contact [ http://nssdc.gsfc.nasa.gov/planetary/mgn_rip.txt ] with the spacecraft. Tomorrow's picture: Two Tails of Comet West |
|
Explanation: The Lunar Orbit
Title |
Explanation: The Lunar Orbiter 1 spacecraft [ http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?66-073A ] was launched in 1966 to map the lunar surface [ http://antwrp.gsfc.nasa.gov/apod/lib/moon.html ] in preparation for [ http://nssdc.gsfc.nasa.gov/planetary/lunar/lunartimeline.html ] the Apollo moon landings [ http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo.html ]. NASA's plucky robotic explorer performed its job well and pioneered this classic view of the Earth [ http://nssdc.gsfc.nasa.gov/imgcat/html/object_page/lo1_h102_123.html ] poised above the lunar horizon. The first humans to directly witness a similar [ http://antwrp.gsfc.nasa.gov/apod/ap951117.html ] scene were the Apollo 8 astronauts [ http://www.nasm.edu/APOLLO/AS08/Apollo8_fact.html]. As they orbited the Moon in December of 1968 they also recorded Earth rise in a photograph [ http://antwrp.gsfc.nasa.gov/apod/ap951225.html ] that was to become one of the most famous images in history - a moving portrait of our world from deep space. |
|
A Cosmic Snowball
Title |
A Cosmic Snowball |
Explanation |
Like cosmic snowballs, fluffy comet-like objects [ ftp://pao.gsfc.nasa.gov/pub/pao/releases/1997/97-59.htm ] the size of houses and composed mostly of water-ice, may be pummeling planet Earth 5 to 30 times a minute. This controversial theory was originally proposed in 1986 by Dr. Louis Frank (U. Iowa) based on data from NASA's Dynamics Explorer 1 [ http://blanc.physics.uiowa.edu/www/desai/ ]. It is further supported by recently reported findings from the one year old POLAR spacecraft [ ftp://ftp.hq.nasa.gov/pub/pao/presskit/1996/POLAR_Press_Kit.txt ]. Representing a previously unknown class of Solar System objects, these proposed small, icy comets disintegrate in the upper atmosphere at altitudes of 600 to 15,000 miles and so do not pose an impact threat [ http://antwrp.gsfc.nasa.gov/apod/ap960604.html ] to the Earth's surface or even to spacecraft in low Earth orbit [ http://antwrp.gsfc.nasa.gov/apod/ap961224.html ]. On breaking up, however, they produce a fleeting trail of clouds of water vapor. Traces of these transient, extremely high altitude clouds [ http://pao.gsfc.nasa.gov/gsfc/newsroom/flash/flash.htm ] can be detected by down looking spacecraft designed to monitor the near-Earth environment. The suspected trail of one such cosmic snowball vaporizing over the Atlantic Ocean and Western Europe at an altitude of 5,000 to 15,000 miles is seen above. It was recorded in a 54 second exposure by POLAR's Visible Imaging System [ http://www-pi.physics.uiowa.edu/www/vis/ ] in September of 1996. A map has been added as a background for location reference. If continuous over the history of the Earth's formation, this relatively gentle cosmic snow shower would have been a major source of water for Earth's present life-nurturing oceans [ http://antwrp.gsfc.nasa.gov/apod/ap960806.html ] and possibly even a source of simple organic compounds. |
|
The Earth Also Rises
Title |
The Earth Also Rises |
Explanation |
The Lunar Orbiter 1 spacecraft [ http://nssdc.gsfc.nasa.gov/cgi-bin/database/www-nmc?66-073A ] was launched in 1966 to map the lunar surface [ http://www.hq.nasa.gov/alsj/main.html ] in preparation for [ http://nssdc.gsfc.nasa.gov/planetary/lunar/lunartimeline.html ] the Apollo moon landings [ http://www.hq.nasa.gov/office/pao/History/ap11ann/introduction.htm ]. NASA's plucky robotic explorer performed its job well and pioneered this classic view of the Earth [ http://nssdc.gsfc.nasa.gov/imgcat/html/object_page/lo1_h102_123.html ] poised above the lunar horizon. The first humans to directly witness a similar [ http://antwrp.gsfc.nasa.gov/apod/ap000115.html ] scene were the Apollo 8 astronauts [ http://www.ksc.nasa.gov/history/apollo/ apollo-8/apollo-8.html ]. As they orbited the Moon in December of 1968 they also recorded Earth rise in a photograph [ http://antwrp.gsfc.nasa.gov/apod/ap951225.html ] that was to become one of the most famous images in history - a moving portrait of our world from deep space. |
|
|