TalkBack Reference Guide

TalkBack Reference Guide

TalkBack Reference Guide

[image: image1.png]talhlmch

'a LIPSinc SDK

[image: image2.jpg];C“ IPSINe

Copyright (1998-2001 by LIPSinc

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of LIPSinc. No patent liability is assumed with respect to the use of information contained herein. Although every precaution has been taken in the preparation of this reference guide, the publisher and author assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein.

Table of contents

11
Introduction

11.1
Overview

11.2
Key Concepts and Definitions

42
Code

53
Package Contents

64
Building Applications with TalkBack

64.1
System Requirements

64.2
Project Settings

75
TalkBack Features

76
Morph Targets and Phonemes

76.1
Morphing and Lip-Synching

86.2
Phonemes Detected

86.3
Phoneme Target Map Configuration Files

106.4
Types of Character Morphing Setups

106.5
Reducing the Number of Morph Targets in the Setup

106.6
Mapping for Flipbook Animation

116.7
Mapped Weights and Analysis Values

117
Speech Gestures, Morph Targets, and Bones

117.1
Eyebrow and Blink Targets

127.2
The Head Bone

127.3
Eyes

138
Library Functions

138.1
Startup/Shutdown Functions

138.1.1
Starting up the library

148.1.2
Shutting down the library

148.2
Version Functions

148.2.1
Getting the TalkBack version number

158.2.2
Getting the TalkBack version number as a string

168.3
Utility Functions

168.3.1
Checking a sound file prior to analysis

198.3.2
Checking optional text prior to analysis

218.3.3
Getting the error string

228.3.4
Getting the last error code

238.4
Analysis Functions

238.4.1
Getting an analysis object

268.4.2
Freeing an analysis object

278.5
Frame Functions

278.5.1
Getting the first frame number

288.5.2
Getting the last frame number

298.5.3
Getting a frame start time

308.5.4
Getting a frame end time

318.6
Phoneme Functions

318.6.1
Getting the number of phonemes

328.6.2
Getting the enumeration of a phoneme

338.6.3
Getting a phoneme start time

348.6.4
Getting a phoneme end time

358.7
Phoneme Editing Functions

368.7.1
Inserting a phoneme

378.7.2
Deleting a phoneme

388.7.3
Changing the start time of a phoneme

398.7.4
Changing the end time of a phoneme

408.7.5
Changing the enumeration of a phoneme

418.8
Word Functions

428.8.1
Getting the number of words

438.8.2
Getting the text of a word

448.8.3
Getting the start time of a word

458.8.4
Getting the end time of a word

458.9
Speech Target Functions

468.9.1
Getting the number of speech target tracks

468.9.2
Getting the number of speech target keys for a track

488.9.3
Getting speech target key info

508.9.4
Getting a speech target value at a frame

518.9.5
Getting the dominant speech target at a frame

538.9.6
Getting a speech target value at a time

548.9.7
Getting the speech target function curve derivatives at a time

558.10
Gesture Functions

568.10.1
Getting the number of gesture tracks

568.10.2
Getting the number of gesture keys for a track

588.10.3
Getting gesture key info

608.10.4
Getting a gesture value at a frame

618.10.5
Getting a gesture value at a time

638.10.6
Getting gesture function curve derivatives at a time

649
Pseudocode Examples

649.1
Speech Target and Gesture Function Curve Pseudocode

659.2
Flipbook Pseudocode

669.3
Weighted Speech Target and Gesture Pseudocode

6710
Error Codes and Explanations

69Appendix A

71Appendix B

113Appendix C

table of examples

4Example 2-1: An example code fragment

13Example 8-1: Starting up the library

14Example 8-2: Shutting down the library

15Example 8-3: Getting the TalkBack version number

16Example 8-4: Getting the TalkBack version number as a string

17Example 8-5: The TALKBACK_SOUND_FILE_METRICS structure

18Example 8-6: Checking a sound file prior to analysis

19Example 8-7: Checking optional text prior to analysis

22Example 8-8: Getting the error string

23Example 8-9: Getting the last error code

24Example 8-10: The TALKBACK_ANALYSIS_SETTINGS structure

25Example 8-11: Getting an analysis object

27Example 8-12: Freeing an analysis object

28Example 8-13: Getting the first frame number

29Example 8-14: Getting the last frame number

30Example 8-15: Getting a frame start time

31Example 8-16: Getting a frame end time

32Example 8-17: Getting the number of phonemes

33Example 8-18: Getting the enumeration of a phoneme

34Example 8-19: Getting a phoneme start time

35Example 8-20: Getting a phoneme end time

36Example 8-21: Inserting a phoneme

37Example 8-22: Deleting a phoneme

39Example 8-23: Changing the start time of a phoneme

40Example 8-24: Changing the end time of a phoneme

41Example 8-25: Changing the enumeration of a phoneme

42Example 8-26: Getting the number of words

43Example 8-27: Getting the text of a word

44Example 8-28: Getting the start time of a word

45Example 8-29: Getting the end time of a word

46Example 8-30: Getting the number of speech target tracks

47Example 8-31: Getting the number of speech target keys for a track

49Example 8-32: Getting speech target key info

51Example 8-33: Getting a speech target value at a frame

52Example 8-34: Getting the dominant speech target at a frame

53Example 8-35: Getting a speech target value at a time

55Example 8-36: Getting the speech target function curve derivatives at a time

56Example 8-37: Getting the number of gesture tracks

57Example 8-38: Getting the number of gesture keys for a track

59Example 8-39: Getting gesture key info

61Example 8-40: Getting a gesture value at a frame

62Example 8-41: Getting a gesture value at a time

64Example 8-42: Getting gesture function curve derivatives at a time

65Example 9-1: Speech target and gesture function curve pseudocode

66Example 9-2: Flipbook pseudocode

66Example 9-3: Weighted speech target and gesture pseudocode

73Figure B1: Neutral Pose – “Silent”
76

73Figure B2: “Bump” Pose
78

73Figure B3: “Cage” Pose
79

73Figure B4: “Church” Pose
80

73Figure B5: “Earth” Pose
81

73Figure B6: "Eat" Pose
82

73Figure B7: "Fave" Pose
83

73Figure B8: "If" Pose
84

73Figure B9: "New" Pose
85

73Figure B10: "Oat" Pose
86

73Figure B11: "Ox" Pose
87

73Figure B12: "Roar" Pose
88

73Figure B13: "Size" Pose
89

73Figure B14: "Though" Pose
90

73Figure B15: "Told" Pose
91

73Figure B16: "Wet" Pose
92

73Figure B17: "Eye Blink" Pose
93

73Figure B18: "Eyebrows Lifted" Pose
94

73Figure B19: "Jaw Open" Meta-target
95

73Figure B20: "Lip Corners Up/Down" Meta-target
96

73Figure B21: "Widen Lips" Meta-target
97

73Figure B22: "Lower Lip Up" Meta-target
98

73Figure B23: "Lower Lip Down" Meta-target
99

73Figure B24: "Narrow and Extrude" Meta-target
100

73Figure B25: "Tongue Down" Meta-target
101

73Figure B26: "Tongue Out" Meta-target
102

73Figure B27: "Tongue to Teeth" Meta-target
103

73Figure B28: "Upper Lip Up" Meta-target
104

73Figure B29: "Cheeks Down" Meta-target
105

73Figure B30: "Cheeks In" Meta-target
106

73Figure B31: " Narrow and Extrude with Cheek Movement " Meta-target
107

73Figure B32: "Jaw Open with Cheek Movement" Meta-target
108

73Figure B33: "Upper Lip Up with Cheek Movement" Meta-target
109

73Figure B34: Bones Set-up Example
110

73Figure B35: Pivot Point Positioning
111

73Figure B36: Default Mapping Weights
112

1 Introduction

1.1 Overview

The LIPSinc TalkBack Software Development Kit (SDK) is a library that provides automated lip-synching and speech gesture functionality for a variety of applications. This reference guide provides technical instruction on how to use TalkBack in these applications.

IMPORTANT: This guide contains information that is essential for proper TalkBack use. LIPSinc recommends that TalkBack users read this document in its entirety.

1.2 Key Concepts and Definitions

Analysis Object

An opaque object (void pointer) created when TalkBack analyzes a sound file. The object contains all the analysis information, which can be extracted from the object in different forms with various function calls.

Bone

A rigid member of the character setup. A bone inherits transforms placed on its parents (i.e., bones closer to the root of the hierarchy) and transmits transforms to its children, thus operating similarly to anatomical bones. Vertices of the character mesh are assigned to one or more bones, and they inherit some measure of those bones’ transforms based on their vertex weights. Note that these vertex weights are completely different from morph weights. Bones are use to move the head for speech gestures in TalkBack.

Character Setup

The sum of the mesh, bones, morph targets, and any additional controllers used to manipulate the character. TalkBack requires that the character setup have certain properties, which are driven by the TalkBack animation data.

Coarticulation

The tendency of the mouth to modify its shape, when pronouncing a phoneme, to accommodate the phonemes which precede and follow it. For example, the “L” in “eulogy” is shaped very differently from the “L” in “elite,” because of the vowels that surround it.

Dominant Speech Target

The speech morph target with the greatest absolute value at a particular frame of animation. Usually used to determine which image to display in flipbook animation.

Euler Angles

A format for representing angles in term of an X, a Y, and a Z rotation. In TalkBack, Euler Angles are used to indicate the orientation of the head bone and eye movements in speech gestures. The Z axis extends upward through the head (eye), and controls head turns (eye rotations from side to side), the X axis extends to the head’s left and controls head nods (eye rotations up and down), and the Y axis extends back behind the head and controls side to side movements (there is no corresponding eye movement). A right-handed coordinate system is intended, but since speech gestures are symmetrical from left to right, a left-handed coordinate system presents no difficulties.

Flipbook Animation

A method of animation using a limited number of still images to produce the illusion of motion. The images are “flipped” as the appropriate one is chosen for each frame. One 3D equivalent is to swap the entire head meshes at each frame instead of morphing. The quality is far inferior to full morphing animation and does not allow for speech gestures.

Frame

The period of time for which a static image is displayed in an animation before being replaced with the next image, or the instant of time at the start of this interval. Also used to refer to the image itself.

Frame Rate

The rate at which images succeed one another in animation, usually expressed as frames per second. 30 fps is the standard for NTSC video, 25 fps for PAL video, 24 fps for film. For real-time engines, the frame rate may be variable.

Function Curve

For a specific track, the curve which defines the value for that track with respect to time. In TalkBack, function curves are Bezier splines which pass through all the track’s keys with the specified in and out derivatives. Thus, the shape of the function curve is defined by the values, times, and incoming and outgoing derivatives of the keys.

Gesture Target

A morph target used in producing speech gestures. In TalkBack, these are left and right eyebrow raises and left and right blink targets. Compare with speech target.

Host Application

The application that is linked to TalkBack and calls TalkBack functions. The host application is the application that uses the SDK.

Key

The basic datum of computer graphics animation. For a given track, a key matches a time with a value, a derivative in, and a derivative out. Function curves drawn through the keys allow for interpolation of values between keys.

Key Time

In TalkBack, the time in seconds at which a key is placed.

Key Value

The value of a particular track at the given key time.

Key Derivative In/Out

The mathematical derivative of the function curve as it enters and leaves this key, respectively. The units of the derivative depend on the track and are [units of the track] per [millisecond].

Library

A file that is linked to the host application to provide extra functionality. TalkBack is a library that provides lip-synching functionality.
Lip-Synching

In the context of TalkBack, the control of the visible organs of speech generation (jaw, teeth, tongue, lips, and the surrounding skin) of a character so as to give the appearance, when played in conjunction with the appropriate audio, that the character is speaking.

Mesh

The 3D geometry of an object, consisting of (at least) the vertices and faces of the object.

Morph Target

A set of positions of the vertices of a 3D mesh which can be used to smoothly animate the vertices of the neutral object in morphing. Usually the morph targets must preserve the vertex number and order of the neutral object. See sections 6 and 7 for a discussion of how morph targets are used to produce lip-synching and speech gestures.

Morphing

A process in which the position of the vertices in a neutral object are transformed to the positions of the vertices in a morph target. The degree to which the transform occurs is controlled by the weight assigned to the target. Morph targets can be used in combination, causing the neutral object to assume a configuration based on the weight of all targets involved. Morphing gives the appearance that a single object is changing shape continuously to approximate a variety of other shapes, making it a good method for lip-synching.

Neutral Object

In morphing, the mesh which represents the rest positions of all vertices. In TalkBack, the neutral object for the head should usually show a relaxed, mouth-closed position.

Phoneme

In the context of TalkBack, the basic auditory building blocks of speech. A list of the phonemes recognized by TalkBack is provided in Appendix A.

Phoneme Target Map

A description of how the morph targets in the character setup must be weighted to produce the ideal viseme corresponding to each phoneme. Thus, a table with columns for morph targets, rows for phonemes, and a weight entered in each cell. In TalkBack, the phoneme target map is read from a file. See section 6.3, Phoneme Target Map Configuration Files.

Speech Gestures

Certain head and face movements which typically accompany speech. TalkBack analyzes the sound file to appropriately chose and time these movements.

Speech Target

A morph target affecting the visual organs of speech, used in producing lip-synching. Compare with gesture target. See section 6 and 7 for a complete discussion of how speech and gesture targets are used with TalkBack.

Track

A description of how a single quantity changes throughout an animation. Tracks usually take the form of a list of keys. In TalkBack, there are tracks containing keys for speech target weights, gesture target weights, and the Euler angles of the head bone and gaze direction for eyes.

Viseme

The face shape a person (or character) makes to perform some function, in this context the pronunciation of a phoneme, although visemes are also used to express emotions or convey meanings. For a discussion of visemes and their relationship to morph targets, see section 6.1, Morphing and Lip-Synching.

Weight

Morph weight. The degree to which the neutral object’s vertices are “pulled” toward (or in the case of negative weights, “pushed” away from) those of the morph target to which the weight is assigned. A weight of zero means that this target has no influence, while a weight of one means that, in the absence of other targets with non-zero weights, the neutral object’s vertices move so that it is identical to the morph target. Both negative values and values greater than one are allowed in TalkBack.

2 Code

All code fragments and pseudocode are formatted with a fixed-pitch font to appear as shown below in Example 2-1. Successive lines consisting only of periods represent lines of code omitted for clarity.

Example 2-1: An example code fragment

#include “TalkBack.h” // TalkBack API

.

.

.

TALKBACK_ANALYSIS* pAnalysis = NULL;

TALKBACK_ERR TalkBackErr = TalkBackGetAnalysis(

 &pAnalysis,

 soundFileName,

 NULL, // Textless analysis.

 NULL); // Use defaults.

3 Package Contents

	File\Folder
	Contents

	Data\
	A folder of various data files required by TalkBack

NOTE: these files must accompany the host application. The location of this data directory is passed to TalkBackStartupLibrary.

	Doc\README.TXT

	Description of the contents of the TalkBack SDK.

	Doc\TalkBack Reference Guide.doc

	Electronic version of this reference guide

	Doc\DEFAULT_TARGET_MAP.INI

	Example of the TalkBack configuration file

NOTE: this file contains default weights for the phoneme target map. The file is not used by TalkBack and is provided for demonstration only.

	Include\TalkBack.h
	The interface (header file) to TalkBack.

	Lib\TalkBack_rd.lib

	A release build of TalkBack which uses the multithreaded dynamic (DLL) runtime library.

NOTE: this file is linked with the host application to provide access to TalkBack routines.

	Lib\TalkBack_rs.lib

	A release build of TalkBack which uses the multithreaded static (non-DLL) runtime library.

NOTE: this file is linked with the host application to provide access to TalkBack routines.

	Lib\TalkBack_dd.lib

	A debug build of TalkBack which uses the debug multithreaded dynamic (DLL) runtime library.

NOTE: this file is linked with the host application to provide access to TalkBack routines but it is only meant for debugging; do not release an application built with this library.

	Lib\TalkBack_ds.lib

	A debug build of TalkBack which uses the debug multithreaded static (non-DLL) runtime library.

NOTE: this file is linked with the host application to provide access to TalkBack routines but it is only meant for debugging; do not release an application built with this library.

	Sample\
	A folder with a sample C application (a Visual C++ 6.0 project) which demonstrates how to use TalkBack.

IMPORTANT: programmers should compile and work through this simple application to see exactly how to call TalkBack routines.

4 Building Applications with TalkBack

4.1 System Requirements

Suggested Developer System - PC

· Microsoft Windows NT 4.0 or Windows 95, 98, 2000

· Intel-compatible processor at 400 MHz

· 128 MB RAM and 500 MB swap space

· CD-ROM drive

· Microsoft Visual C++ 6.0

TalkBack requires Microsoft Visual C++ 6.0 with the latest service pack (5, at the time of this writing, and available at Visual Studio 6 Service Pack 5).

Suggested Target/End-User System - PC

· Microsoft Windows NT 4.0 or Windows 95, 98, 2000

· Intel Pentium class or better processor at 300 MHz

· 128 MB RAM

· wavetable-based sound card for playing audio

· sound-recording hardware for recording audio, e.g., microphone (depends on application)

· speakers or headphones

4.2 Project Settings

TalkBack consists of a set of data files (in the Data folder), a single header file (Include\TalkBack.h), and four library files (in the Lib folder). Four separate libraries are provided for the four most common scenarios used to build 32-bit Windows applications: debug and release builds using both the static (non-DLL) and dynamic (DLL) runtime libraries.

NOTE: because TalkBack is written mostly in C++, be aware that building applications with TalkBack and the dynamic runtime libraries requires the installation of the MSVCP60.DLL on the end-user’s system: this is the C++ runtime DLL and is not included in the base install of most versions of Windows (unlike MSVCRT.DLL, the C runtime DLL).

The Sample application comes correctly configured to build with TalkBack, but the project with which you want to use TalkBack may need to be reconfigured.

First, you have to configure code generation. TalkBack was built with the multithreaded runtime libraries, and your application will have to follow suit:

· bring up the Project Settings dialog in Visual C++

· select Code Generation in the Category: combo box

· select Win32 Debug in the Settings For: combo box

· make sure the Use run-time library: combo box reads either Debug Multithreaded or Debug Multithreaded DLL
· select Win32 Release in the Settings For: combo box

· make sure the Use run-time library: combo box reads either Multithreaded or Multithreaded DLL
Next, you have to set the preprocessor path. Assuming the TalkBack SDK has been copied to C:\TalkBack:

· select All Configurations in the Settings For: combo box

· select the C/C++ pane

· select Preprocessor in the Category: combo box

· enter C:\TalkBack\Include in the Additional Include Directories: edit box

Finally, you have to set up the link configuration:

· select the Link pane

· select Input in the Category: combo box

· enter C:\TalkBack\Lib in the Additional library path: edit box

· select Win32 Release in the Settings For: combo box

· if your release code generation was set to Multithreaded DLL, add TalkBack_rd.lib to the list (if any) in the Object/library modules: edit box; otherwise, use TalkBack_rs.lib to get the static (non-DLL) release build of TalkBack.

· select Win32 Debug in the Settings For: combo box

· if your debug code generation was set to Debug Multithreaded DLL, add TalkBack_dd.lib to the list (if any) in the Object/library modules: edit box; otherwise, use TalkBack_ds.lib to get the static (non-DLL) debug build of TalkBack.

· click OK
If you have any doubts about your configuration, you can always use the Sample application’s build configuration as a reference.

5 TalkBack Features

LIPSinc TalkBack is an SDK which takes in uncompressed WAVE or AIFF audio files with optional text and produces lip-synching and speech gesture animation data as output. This document (the TalkBack Reference Guide) provides detailed information on using TalkBack in your application.

6 Morph Targets and Phonemes

6.1 Morphing and Lip-Synching

Lip-synching consists of two tasks. First, the mouth must assume the proper shape to pronounce each speech sound. Second, the mouth must move with the correct timing, so that the audience associates these movements with the sounds they are hearing. This section considers the first of these problems.

Barycentric morphing provides a method for driving a mesh to many different shapes and for mixing them continuously over time, and consequently is the most widely used method for computer graphics lip-synching. However, there is a considerable difference of opinion among animators about which morph targets are best for lip-synching, or even how many are appropriate. Is it necessary to use a different morph target for P from that used for B and M, for one example? Can the CH and J shapes be sufficiently approximated by a mixture of the E and R shapes, for another?

Functional face shapes such as those used to express an emotion, convey a message, or, most relevant to this discussion, to pronounce a phoneme, are sometimes called “visemes.” This is the definition we will use here, although it should be noted that in other contexts in animation the word “viseme” is sometimes used as a synonym for “morph target.” TalkBack is designed to provide output which will drive a morphing head, regardless of which morph targets are present in the character setup, and how many there are. This is accomplished by mapping the character setup’s morph targets onto the phonemes detected by TalkBack, so that the correct viseme will be produced.

TalkBack breaks speech down into 43 discrete phonemes, the auditory building blocks of speech. Each phoneme is assigned a particular set of weights corresponding to each morph target in order to form the “mix” for the final shape of the mouth for the given phoneme. The viseme that results is the one that TalkBack will have the character use to “pronounce” this phoneme. Thus, any number of morph targets can contribute to the production of a particular viseme.

6.2 Phonemes Detected

A list of the phonemes detected by TalkBack, with sample words in which those phonemes occur, is included in Appendix A.

6.3 Phoneme Target Map Configuration Files

The weights assigned to each morph target for every phoneme are set in a phoneme target map configuration file, which is a standard INI file. The file’s name can be specified in the fConfigFile field in TALKBACK_ANALYSIS_SETTINGS (see section 8.4, Analysis). The file format is shown below.

; optional comment line(s)

[PhonemeToSpeechTargetMapping]
NumSpeechTargets =Number of targets in the character setup

Iy =
weight 1,
 weight 2,
weight 3……………weight n

Ih =
weight 1,
 weight 2,
weight 3……………weight n

.

.

.

.

.

Flap =
weight 1,
 weight 2,
weight 3……………weight n

Weights must be provided for all 43 phonemes. Weight values of 1 correspond to a target being driven to its maximum. Values greater than 1 are permitted, since they are permitted in barycentric morphing, and have the effect of over-driving the morph object. Likewise, negative values will drive the morph object in the opposite direction from the target.

For example:

[PhonemeToSpeechTargetMapping]

NumSpeechTargets=7

Iy=0.20, 0.00, 0.20, 0.00, 0.70, 0.00, 0.00

Ih=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

Eh=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

Ey=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

Ae=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

Aa=0.90, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00

Aw=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

Ay=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

Ah=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

Ao=0.90, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00

Oy=0.70, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00

Ow=0.70, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00

Uh=0.00, 0.55, 0.00, 0.00, 0.30, 0.00, 0.00

Uw=0.00, 0.55, 0.00, 0.00, 0.30, 0.00, 0.00

Er=0.50, 0.20, 0.00, 0.00, 0.30, 0.00, 0.00

Ax=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

S=0.00, 0.00, 0.00, 0.00, 0.00, 0.50, 0.00

Sh=0.00, 0.20, 1.00, 0.00, 0.00, 0.00, 0.00

Z=0.00, 0.00, 0.00, 0.00, 0.00, 0.50, 0.00

Zh=0.00, 0.20, 1.00, 0.00, 0.00, 0.00, 0.00

F=0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00

Th=0.35, 0.00, 0.00, 0.00, 0.10, 0.20, 0.00

V=0.00, 0.00, 1.00, 0.00, 0.00, 0.00, 0.00

Dh=0.35, 0.00, 0.00, 0.00, 0.10, 0.20, 0.00

M=0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00

N=0.00, 0.10, 0.00, 0.00, 0.60, 0.20, 0.00

Ng=0.00, 0.10, 0.00, 0.00, 0.60, 0.20, 0.00

L=0.25, 0.00, 0.00, 0.00, 0.10, 0.20, 0.00

R=0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00

W=0.00, 0.55, 0.00, 0.00, 0.30, 0.00, 0.00

Y=0.00, 0.55, 0.00, 0.00, 0.30, 0.00, 0.00

Hh=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

B=0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00

D=0.25, 0.00, 0.00, 0.00, 0.10, 0.20, 0.00

Jh=0.00, 0.20, 1.00, 0.00, 0.00, 0.00, 0.00

G=0.80, 0.15, 0.00, 0.00, 0.40, 0.00, 0.00

P=0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 0.00

T=0.25, 0.00, 0.00, 0.00, 0.10, 0.20, 0.00

K=0.80, 0.15, 0.00, 0.00, 0.40, 0.00, 0.00

Ch=0.00, 0.20, 1.00, 0.00, 0.00, 0.00, 0.00

Sil=0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00

ShortSil=0.60, 0.10, 0.00, 0.00, 0.00, 0.40, 0.00

Flap=0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00

In this example, the D phoneme is mapped with a set of weights that will cause the first morph target to be driven to 25% of its maximum, the fifth to 10%, the sixth to 20%, and the rest will be ignored.

If no configuration file is specified, TalkBack uses a hard-coded set of weights and targets, which assume a default character setup using 15 targets. These 15 targets correspond to the 15 visemes in Appendix B. The table of our default weights is also shown in Appendix B and can be found in the file DEFAULT_TARGET_MAP.INI, which ships with TalkBack. Note that editing of the DEFAULT_TARGET_MAP.INI will not cause changes in the default setup of TalkBack. This file is not used in TalkBack (unless it is specified as a mapping file in the fConfigFile field in TALKBACK_ANALYSIS_SETTINGS structure) and is provided only as a demonstration of the file format and as a starting point (for the end user) for creating other configuration files.

6.4 Types of Character Morphing Setups

The individual targets need not be directly associated with any particular group of phonemes at all, although this is the most common setup in hand lip-synching, where morph targets might be named “B/M/P” or “W/OO”. A setup might have targets which instead correspond to muscles around the lips and lower face, or to particular aspects of articulation such as lip extrusion, jaw opening, tongue position, etc. As long as it is possible to combine and weight the targets to produce an appropriate viseme for each phoneme, the phoneme target map configuration file can be created, and TalkBack will be able to use the character setup.

6.5 Reducing the Number of Morph Targets in the Setup

There are many reasons to use the smallest number of morph targets that will still provide good lip-synching, such as ease of content creation, lightness of the setup, and file size. Fortunately, a small number of well-chosen and constructed targets can be recombined to produce all the necessary visemes.

In fact, there is little or no visual distinction between two different-sounding phonemes (usually because the physical difference in their articulation is due to some structure which is hidden deep inside the mouth or throat). “S” and “Z” sounds look more or less identical on the face, as do “F” and “V” sounds. In TalkBack, the “F” phoneme might have the same set of weights mapped onto it as “V”. Other pairs of phonemes differ less in the viseme used in articulating them than in the degree to which the mouth is pushed toward that viseme. The viseme for the “Y” sound can be considered a slight easing of the viseme for the “W” sound. In TalkBack, the “Y” phoneme’s weights might be slightly scaled down from the “W” phoneme’s weights.

In practice, 15 morph targets are generally the most that would be required to produce adequate visemes for all 43 phonemes, setups with 8 or 9 targets are common in hand lip-synching, and we have had good results with as few as 5. A setup with one morph target—an open mouth—will still produce an illusion of lip-synching; this one target could be assigned a different weight for each phoneme, high values for vowels and open-mouthed consonants, low or zero for closed-mouth consonants.

6.6 Mapping for Flipbook Animation

One of the values which can be extracted from the TalkBack analysis object is the dominant speech target at any given frame (see section 8.9.5, Getting the dominant speech target at a frame). The chief anticipated use for this value is in flipbook style animation, where a set of static 2D images are projected in sequence (“flipped”) to produce the illusion of lip-synching.

For this kind of animation, assigning weights to multiple targets for a single phoneme doesn’t make sense, since only one target will be seen for each phoneme in the output. For each phoneme, the desired target should be set to one (1), and all others to zero.

For purposes of flipbook animation, it is also necessary to produce a flipbook image showing the neutral mouth-closed position. This is used when all targets are set to zero, that is, when the speaker is silent. See TalkBackGetDominantSpeechTargetAtFrame (see section 8.9.5, Getting the dominant speech target at a frame) function for more details.

6.7 Mapped Weights and Analysis Values

If the values extracted from the TalkBack analysis object are compared to the values specified in the phoneme target map file, it is normal for the peak output values of the targets for a particular phoneme to be different from the values provided in the map file. Since in normal speech phonemes rarely occur in isolation, TalkBack adjusts the values to simulate what linguists call “coarticulation,” the tendency of speakers to modify the articulation of a phoneme based on the phonemes that precede and follow it in the speech stream. Among other more complicated effects, during rapid speech the mouth often does not have time to fully assume the ideal viseme for a phoneme, and the actual shape is somewhat distorted or suppressed, or both. All of this is reflected in the TalkBack analysis.

7 Speech Gestures, Morph Targets, and Bones

In addition to lip-synching, TalkBack can provide animation that will realistically move a character’s head, eyes, and eyebrows in synch with its speech. The morph targets required to manipulate the eyebrows and eyes are not referenced in the phoneme target map file; they are specified below. To take advantage of these motions, collectively called “Speech Gestures,” the character setup must contain these targets, as well as a bone to provide for head motion.

7.1 Eyebrow and Blink Targets

Output for the following morph targets is provided by TalkBack:

TALKBACK_GESTURE_EYEBROW_RAISE_LEFT

Raise the left eyebrow, as if in surprise;

TALKBACK_GESTURE_EYEBROW_RAISE_RIGHT

Raise the right eyebrow similarly;

TALKBACK_GESTURE_BLINK_LEFT

Close the left eye without squinting;

TALKBACK_GESTURE_BLINK_RIGHT

Close the right eye similarly.

All values are the morphing weights, just like for the speech targets.

It is possible to use a character setup with one target which raises both eyebrows, and one which blinks both eyes. Either the left or right eyebrow and blink tracks would be used, and the other half discarded. However, if all four targets are present, TalkBack will slightly offset their motion both in time and degree, just as occurs on real faces.

7.2 The Head Bone

TalkBack provides rotation tracks for the bends, twists, and side-to-side motion of the head during speech. Typically these will drive a head bone (although if there is no body or neck, they could drive the rotation part of the head mesh transform directly). As with all character setups, the head should be pivoted at its joint with the neck, and vertices of the head should move rigidly with the bone (issues like compression of jowls aside), with only the neck vertices allowed to deform. The output tracks are named as follows:

TALKBACK_GESTURE_HEAD_BEND

The rotation of the head on the X axis (nodding up and down);

TALKBACK_GESTURE_HEAD_SIDE_SIDE

The rotation of the head on the Y axis (tilting side to side);

TALKBACK_GESTURE_HEAD_TWIST

The rotation of the head on the Z axis (turning side to side).

All values are in degrees.

It may be desirable to set up a “gross head movement” bone between the neck and the head bone driven by TalkBack in the hierarchy. This allows for looking behaviors (over the shoulder, at another speaker, glancing at an object, etc.) to be controlled separately from the nods, twists, and turns of normal speech.

7.3 Eyes

Animators usually handle eyes with a look-at controller, which keeps the eyes pointed at a dummy object that can be moved to control gaze direction.

If this is not possible, TalkBack provides eye counter-rotation information that will keep the eyes focused in the same direction, regardless of the speech gestures being performed. In addition, a slight “jitter” is added to the eye rotations, reflecting the fact that the human eye generally scans a subject rather than remaining stationary. The output tracks are:

TALKBACK_GESTURE_EYE_SIDE_SIDE_LEFT

Side-to-side motion of the left eye;

TALKBACK_GESTURE_EYE_SIDE_SIDE_RIGHT

Side-to-side motion of the right eye.

TALKBACK_GESTURE_EYE_UP_DOWN_LEFT

Up-down motion of the left eye;

TALKBACK_GESTURE_EYE_UP_DOWN_RIGHT

Up-down motion of the right eye;

All values are in degrees. No Y-axis rotations are provided, since the eyes cannot spin on this axis.

8 Library Functions

The following sections explain how to apply the TalkBack technology to your application, and section 9, Pseudocode Examples provides usage examples presented in pseudocode.

8.1 Startup/Shutdown Functions

8.1.1 Starting up the library

// Should be the first function called when using TalkBack.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackStartupLibrary(

 const char* iCoreDataDir); // IN: full path of folder containing TalkBack data files.

Before you can perform any operations using TalkBack, you must start TalkBack by calling TalkBackStartupLibrary (see Example 8-1). The location (full path) to the core data files must be specified in this call.

Example 8-1: Starting up the library
// STARTING UP THE LIBRARY

char coreDataDir[] = "C:\\TalkBalk SDK\\data\\";

TALKBACK_ERR err = TalkBackStartupLibrary(

 coreDataDir);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // No error, continue...

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Data directory not supplied.

	TALKBACK_ERROR
	Calling startup twice.

	TALKBACK_CORE_DATA_NOT_FOUND_ERR
	Core data not found in specified directory.

	TALKBACK_STARTUP_FAILED_ERR
	Didn’t find all the files needed to successfully start.

8.1.2 Shutting down the library

// Should be the last function called when using TalkBack.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackShutdownLibrary(); // IN: nothing.

TalkBack should be shut down by calling TalkBackShutdownLibrary (see Example 8-2). This function has no parameters. Do not call any other library functions after calling TalkBackShutdownLibrary.

Example 8-2: Shutting down the library
// SHUTTING DOWN THE LIBRARY

TALKBACK_ERR err = TalkBackShutdownLibrary();

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // No error, continue...

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_SHUTDOWN_FAILED_ERR
	Reserved for future use.

8.2 Version Functions

8.2.1 Getting the TalkBack version number

// Gets the TalkBack version number.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetVersion(

 long* oMajor, // OUT: major version number.

 long* oMinor, // OUT: minor version number.

 long* oRevision); // OUT: revision version number.

To get the version number of TalkBack, call TalkBackGetVersion (see Example 8-3).

Example 8-3: Getting the TalkBack version number
// GETTING THE TALKBACK VERSION NUMBER

long verMajor = 0;

long verMinor = 0;

long verRevision = 0;

TALKBACK_ERR err = TalkBackGetVersion(

 &verMajor,

 &verMinor,

 &verRevision);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in verMajor, verMinor, and verRevision.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	One or more of the parameters was NULL.

8.2.2 Getting the TalkBack version number as a string

// Gets the TalkBack version number as a string.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetVersionString(

 long iMaxChars, // IN: size of version string buffer.

 char* oVersion); // OUT: version string buffer.

To get the TalkBack version number as a string, call TalkBackGetVersionString (see Example 8-4).

Example 8-4: Getting the TalkBack version number as a string
// GETTING THE TALKBACK VERSION NUMBER AS A STRING

char verStr[256] = "";

TALKBACK_ERR err = TalkBackGetVersionString(

 sizeof(verStr),

 verStr);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in verStr.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	oVersion is NULL.

	TALKBACK_INVALID_PARAMETER_ERR
	iMaxChars is less than or equal to zero.

8.3 Utility Functions

8.3.1 Checking a sound file prior to analysis

// Checks whether a sound file can be analyzed and returns some quality metrics.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetSoundFileMetrics(

 const char* iSoundFileName, // IN: name of sound file to be checked.

 TALKBACK_SOUND_FILE_METRICS* ioMetrics); // IN/OUT: address of metrics structure.

A sound file has to be provided as the input to the most basic function of TalkBack, the function TalkBackGetAnalysis. It is recommended that the sound file be checked before passing it to TalkBackGetAnalysis by calling TalkBackGetSoundFileMetrics (see Example 8-6). The name of the sound file must be specified as the input to TalkBackCheckSoundFile, and the following structure will be provided as the output:

Example 8-5: The TALKBACK_SOUND_FILE_METRICS structure
typedef struct

{

 size_t m_size;

 long m_bitsPerSample;

 long m_sampleRate;

 double m_duration;

 long m_canBeAnalyzed;

 long m_isClipped;

 double m_decibelRange;

 int m_quality;

 long m_channelCount;

} TALKBACK_SOUND_FILE_METRICS;

Field m_size should be set to sizeof(TALKBACK_SOUND_FILE_METRICS) before the structure can be used. After return from the TalkBackGetSoundFileMetrics function, field m_bitsPerSample is set to the bits per sample in the file name referenced by iSoundFileName, field m_samplerate is set to the sampling rate of the sound file, the duration of the sound file (in seconds) is returned in the field m_duration, and the number of audio channels in the original sound file is reported in the field m_channelCount.
A sound file can be used as an input to the TalkBackGetAnalysis, and the function TalkBackGetSoundFileMetrics will report this sound file as usable (by setting the m_canBeAnalyzed field to 1 and not to 0), if all of the following conditions hold:

· the file is a WAVE or AIFF format PCM sound file with non-empty data chunk;

· the length of the file is less than or equal to 5 minutes (300,000 ms).

· the bits per sample resolution is 8 bit or 16 bit;

· sampling frequency is greater than or equal to 8 kHz but not more than 48 kHz.

TalkBack is capable of analyzing any files that satisfy the four conditions outlined above, however, LIPSinc does not recommend using files with poor sound quality for analysis, since the quality of the animation will be reduced accordingly. A sound is considered to be of low quality if it has high background noise component (background static, music, human speech, other sounds unrelated to the speech that has to be animated), is clipped, or doesn’t make use of the whole available decibel range (the full available db range is different for 8 bit and 16 bit resolution).

A sound file may be clipped if the audio system used to record it wasn't properly tuned and the A/D converter wasn't able to properly convert the whole analog range of the sound into available digital range (the digital range required for proper conversion would have been larger than the one provided). This often occurs when the microphone is held close to mouth during speech. Clipped sound files carry not only the frequencies of the original signal, but also a whole spectrum of frequencies associated with sharp transitions of derivatives, which typically happen when clipping occurs. Notice that rescaling of the sound file will not improve the file quality, since all the noise in the frequency spectrum associated with clipping will still remain. TalkBackGetSoundFileMetrics is capable of detecting clipped files (by setting the field m_isClipped of TALKBACK_SOUND_FILE_METRICS structure to 1) even if such files were rescaled.

TalkBackGetSoundFileMetrics also reports the decibel range used in the sound file in the field m_decibelRange of the structure TALKBACK_SOUND_FILE_METRICS. The decibel range is defined as 20 times the logarithm of the maximum absolute integer values the audio signal assumes. Thus, if the signal goes from zero to one and back, in a cycle or not, then the max absolute value it assumes is 1, which translates into the decibel range of 1. If the signal touches the absolute maximum value allowed for a 16 bit integer, abs(-32768), then the range is 20*log(32768)=90.31.

To assist the user in deciding whether a particular file is sufficiently noise free and has human speech as its primary component, TalkBack provides a measure of sound quality for lip-synching purposes via the m_quality field in the TALKBACK_SOUND_FILE_METRICS structure. The quality value is computed based how close certain statistical characteristics of the sound are to those of human speech. This measure is not perfect, but should give the user some measure of how reliable the lip-synching animation results are going to be for a given sound file. Best records have the quality value above 60 or 70. The sound file with quality values around 40 still can give reasonable animation results. If a particular sound file is reported to have sound quality in the thirties, one should expect reasonable lip-synching only if text is provided, otherwise the errors in lip-synching will be noticeable even by a non professional.

Example 8-6: Checking a sound file prior to analysis
// CHECKING A SOUND FILE PRIOR TO ANALYSIS

char soundFilePathName[_MAX_PATH] = "C:\\audioFile.wav";

TALKBACK_SOUND_FILE_METRICS fileMetrics;

fileMetrics.m_size = sizeof(fileMetrics);

TALKBACK_ERR err = TalkBackGetSoundFileMetrics(

 soundFilePathName,

 &fileMetrics);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in all fields of fileMetrics structure.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	One of the pointers passed in to the function is NULL.

	TALKBACK_COULD_NOT_LOAD_SOUND_ERR
	The sound file does not exist or could not be loaded. Often this is an indicator of a corrupt sound file.

	TALKBACK_INVALID_PARAMETER_ERR
	The size of the structure in the filed m_size in TALKBACK_SOUND_FILE_METRICS is not set correctly.

A function TalkBackCheckSoundFile can be found in the header file TalkBack.h. This function was used for getting information about the sound file in the previous versions of TalkBack. It is deprecated and has been supplanted by TalkBackGetSoundFileMetrics.

8.3.2 Checking optional text prior to analysis

// Checks whether text can be used for text-based analysis, returning the text

// as it will be analyzed.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackCheckSpokenText(

 const char* iSpokenText, // IN: text to check.

 long iMaxChars, // IN: size of analyzed text buffer.

 char* oAnalyzedText);// OUT: buffer for text as it will be analyzed.

TalkBack can perform analysis in text-based or textless mode. If the text string is specified in the TalkBackGetAnalysis call, the text-based analysis is performed. If the specified text is invalid (see below), or is completely omitted (NULL pointer is provided in the appropriate field in the TalkBackGetAnalysis call), the analysis falls into the textless mode.

The quality of the text-based mode of lip-synching usually exceeds that of the textless, so the use of text is encouraged. However, it is important to note that the text used in the analysis should be exactly the text that is being spoken. This requirement seems easy to satisfy. It would be so if TalkBack was not doing any pre-processing on the text string provided as the input. However, this is not the case. The internal engine has some limitations, and the text provided by the end client has to be pre-processed to be usable by the internal engine.

To make intelligent decisions about the input text, one has to know what pre-processing is performed on the input text string, before it makes its way into the analysis engine. The answer to this question is provided in the two subsections below.

TalkBackCheckSpokenText function

TalkBackCheckSpokenText (see Example 8-7) takes a text string as the input and provides the pre‑processed text as the output (the length of the output buffer has to be also specified). The pre-processed text will always be in UPPER CASE.

Example 8-7: Checking optional text prior to analysis
// DETERMINE HOW THE INPUT TEXT WILL BE USED DURING THE ANALYSIS

char spokenText[256] = "this is a test of the Talkbalk library";

char analyzedText[256] = "";

TALKBACK_ERR err = TalkBackCheckSpokenText(

 spokenText,

 sizeof(analyzedText),

 analyzedText);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in analyzedText.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	One of the pointers passed in is NULL.

	TALKBACK_INVALID_PARAMETER_ERR
	iMaxChars is less than or equal to zero

Text Processing Within TalkBack For Text-Based Mode

This subsection provides a complete description of the pre-processing performed by TalkBack, i.e., how the input parameter of TalkBackCheckSpokenText (input text string) is converted into the output parameter (pre-processed text string).

In text-based mode, TalkBack takes as input an input text string of words. This string is an old-fashioned array of characters; it is not Unicode or wide characters. Just the plain old seven-bit, ASCII character set (ISO/IEC 646).

The input string can contain any characters, including punctuation and line feeds. It is first filtered to remove unacceptable symbols and translate all alphabet characters to upper case. Only a small number of symbols (apostrophe, and linefeed) are allowed to pass through the filter. Digits and most symbols are removed from the input text.

The following table indicates the character processing performed by TalkBack. For those items marked “Skipped”, the character is actually deleted from the character string as though it were not present; it is not replaced with anything else.

	Input
	TalkBack Output
	Reason

	Lower-case alpha (‘a’ to ‘z’)
	Upper-case alpha (‘A’ to ‘Z’)
	NoProblem

	Upper-case alpha (‘A’ to ‘Z’)
	Upper-case alpha (‘A’ to ‘Z’)
	NoProblem

	Tab (‘\t’)
	Space (‘ ’)
	NoProblem

	Space (‘ ’)
	Space (‘ ’)
	NoProblem

	Linefeed (‘\n’)
	Space (‘\n’)
	NoProblem

	Apostrophe (‘\'’)
	Apostrophe (‘\'’)
	NoProblem

	Dash (‘-’)
	Space (‘ ’)
	Punctuation

	Period (‘.’)
	Space (‘ ’)
	Punctuation

	Comma (‘,’)
	Space (‘ ’)
	Punctuation

	Semi-colon (‘;’)
	Space (‘ ’)
	Punctuation

	Question mark (‘?’)
	Space (‘ ’)
	Punctuation

	Exclamation mark (‘!’)
	Space (‘ ’)
	Punctuation

	Double-quote (‘"’)
	Space (‘ ’)
	Punctuation

	Colon (‘:’)
	Space (‘ ’)
	Punctuation

	Parentheses (‘(’ and ‘)’)
	Space (‘ ’)
	Punctuation

	Digits (‘0’ to ‘9’)
	Skipped
	Symbols

	All other ASCII symbols
	Skipped
	Symbols

	Non-printing characters
	Skipped
	Unacceptable

	Non-ASCII characters (c>128)
	Skipped
	Unacceptable

The modified string is then parsed to divide it into separate words; spaces, tabs, and line feeds are used to separate characters.

If the input text has no words (i.e., no recognizable letters), then TalkBack will automatically switch from text-based to textless mode. For example, if the input text was all digits or did not include any valid alphabetical characters, then the program would run in textless mode.

Acronyms for which the letters are pronounced individually should be entered as space-delimited single characters. Periods can also be used to separate the letters. For example,

DSP

wrong; interpreted as a word “dsp”

D S P
correct; interpreted as three letters
D.S.P.
correct; interpreted as three letters
Using text to assist automated lip-synching is quite handy, but it has some limitations. Foremost among the limitations is the lack of support for numbers entered as digits ("twelve" entered as "12," for example). In fact, TalkBack throws the digits away (although there is a perfectly valid reason for doing so!).

To give an example, if you try to analyze a recording of "I would like 5 of your best cigars," and the text reads "I would like 5 of your best cigars," what actually gets analyzed is "I would like of your best cigars;" the "5" never makes it in, and all the visemes around the missing "5" get smeared into the span it used to occupy. Since this is probably not what you want, enter numbers as text, not as digits.

Likewise, TalkBack does not handle abbreviations: if the sound file says, "Say your prayers, Mr. Smith!" enter the text as "say your prayers mister smith"

In general, enter text phonetically, and you will get the results you expect.

8.3.3 Getting the error string

// Convert a TalkBack error code to a description string.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetErrorString(

 TALKBACK_ERR iErrorCode, // IN: TalkBack error code to convert.

 long iMaxChars, // IN: size of the buffer.

 char* oErrorString); // OUT: buffer for the description string.

To get the description of the error code as a string, call TalkBackGetErrorString (see Example 8-8).

The parameter iErrorCode must be a valid TalkBack error code. TalkBack error codes are defined in TalkBack.h

Example 8-8: Getting the error string
// GETTING THE ERROR STRING

// errCode returned from any library function

char errorString[256] = "";

TALKBACK_ERR err = TalkBackGetErrorString(

 errCode,

 sizeof(errorString),

 errorString);

if (err != TALKBACK_NOERR)

{

 // You’re doing something really wrong...

}

else

{

 // The function succeeded and filled in errorString.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	oErrorString is NULL.

	TALKBACK_INVALID_PARAMETER_ERR
	iMaxChars is zero or negative, or iErrorCode is not a TalkBack error code.

8.3.4 Getting the last error code

// Gets the error code and text for the most recent TalkBack error.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetLastError(

 long iMaxChars, // IN: size of the buffer.

 char *oErrorString, // OUT: buffer for the description string.

 TALKBACK_ERR *oErrorCode); // OUT: most recent TalkBack error code.

Call this function to get the last error code in Talkback (see Example 8-9).

Example 8-9: Getting the last error code
// GETTING THE LAST ERROR CODE

TALKBACK_ERR errorCode;

long maxChars = 256;

char errorString[maxChars] = "";

TALKBACK_ERR err = TalkBackGetLastError(

 sizeof(errorString),

 errorString,

 &errorCode);

if (err != TALKBACK_NOERR)

{

 // You’re doing something really wrong...

}

else

{

 // The information about the last error is now in oErrorCode and oErrorString.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	The error code of the string buffer was not supplied.

	TALKBACK_INVALID_PARAMETER_ERR
	iMaxChars is less than or equal to zero

8.4 Analysis Functions

8.4.1 Getting an analysis object

// Gets an opaque TALKBACK_ANALYSIS object. This object is then queried with the

// TalkBackGet* functions below.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetAnalysis(

 TALKBACK_ANALYSIS** ioAnalysis, // IN/OUT: opaque analysis object

 const char* iSoundFileName, // IN: name of the sound file to analyze.

 const char* iSoundText, // IN: text spoken (can be NULL)

 TALKBACK_ANALYSIS_SETTINGS* iSettings); // IN: analysis settings (can be NULL)

To generate an analysis object, call TalkBackGetAnalysis; this is one of the most basic functions in TalkBack and generally must be executed before any further analyses or functions can be performed. This call must specify:

· a pointer to a TALKBACK_ANALYSIS variable where analysis will be stored

· the filename (full path) of the WAVE or AIFF file to analyze (see section 8.3.1, Checking a sound file prior to analysis for more information on sound file limitations)

· the text spoken in the sound file (optional) (see section 8.3.2, Checking optional text prior to analysis for more information on text limitations)

· a pointer to a TALKBACK_ANALYSIS_SETTINGS data structure with the desired settings

TalkBack can operate in both text-based and textless mode. For more explanations on the use of optional text, see section 8.3.2, Checking optional text .

The TALKBACK_ANALYSIS_SETTINGS data structure is defined as follows:

Example 8-10: The TALKBACK_ANALYSIS_SETTINGS structure

typedef struct

{

 long fSize;

 long fFrameRate;

 long fOptimizeForFlipbook;

 long fRandomSeed;

 const char* fConfigFile;

} TALKBACK_ANALYSIS_SETTINGS;

If a non-NULL TALKBACK_ANALYSIS_SETTINGS structure pointer is passed to TalkBackGetAnalysis, all fields in the structure must be filled in (even if they are not needed by your application). There are constants defined in TalkBack.h for each field’s default value.

Field fSize should be set to sizeof(TALKBACK_ANALYSIS_SETTINGS) before the structure can be used. The constant TALKBACK_SETTINGS_SIZE is defined in TalkBack.h to this value.

Field fFrameRate should be filled with the frame rate for this analysis (it matches the frame rate at which the final animation is to be played back). The fFrameRate field is only used in the functions TalkBackGetSpeechTargetValueAtFrame, TalkBackGetDominantSpeechTargetAtFrame, and TalkBackGetGestureValueAtFrame. The constant TALKBACK_DEFAULT_FRAME_RATE is defined in TalkBack.h to this value.

Field fOptimizeForFlipbook is used to specify the mode of animation for which the analysis results are meant to be used. If the intended use is flipbook, fOptimizeForFlipbook should be set to 1, if the results of the analysis will be used in morphing, the value of fOptimizeForFlipbook should be set to zero. If the field fOptimizeForFlipbook is not specified, a default value of zero is assumed. See Key Concepts and Definitions for a description of flipbook animation. See section 6.6 for further notes on dominant targets and flipbook animation.

Note that the flipbook style of animation is inferior in quality to morphing and doesn’t allow for speech gestures. If the fOptimizeForFlipbook field is set in the call to TalkBackGetAnalysis, only the use of TalkBackGetDominantSpeechTargetAtFrame (among the speech target querying functions) is recommended with the analysis object thus obtained. Calls to other speech target querying functions, and calls to any gesture related functions will not fail but are not recommended.

If the morphing style of animation is intended (fOptimizeForFlipbook is set to zero or the default is assumed), querying functions TalkBackGetNumSpeechTargetTracks, TalkBackGetNumSpeechTargetKeys, TalkBackGetSpeechTargetKeyInfo, TalkBackGetSpeechTargetValueAtFrame, TalkBackGetSpeechTargetValueAtTime, and TalkBackGetSpeechTargetDerivativesAtTime, and all the speech gesture related querying functions can be called. The use of TalkBackGetDominantSpeechTargetAtFrame is not recommended.

The value specified in the fRandomSeed field is used in the generation of speech gestures only. Speech gestures are triggered by conditions extracted from the sound file. In some situations, several different gestures might be appropriate—a head nod instead of a head turn, for example. In such cases, TalkBack will chose a gesture based on certain probability distributions and a random number. TalkBack also introduces very slight irregularities in the timing and symmetry of speech gestures, to avoid what animators call “twinning,” a somewhat robotic effect. These irregularities are also random. All the randomness is generated through a random number generator that requires an initial seed. This initial seed is taken from the fRandomSeed field or generated from the current time if fRandomSeed is not specified by the user. Thus, if the deterministic results in gesture animation are required, fRandomSeed field has to be set to some value. When the field is not set, the speech gestures generated by TalkBack will differ from one run to another.

The path to a configuration file with phoneme to speech target mapping is specified in the fConfigFile field. See section 6.3, Phoneme Target Map Configuration Files, for the description of the configuration file. Set fConfigFile to NULL to use the default mapping. The constant TALKBACK_NO_CONFIG_FILE is defined in TalkBack.h to NULL.

If no configuration file is specified (i.e. if you set fConfigFile to NULL or pass NULL in the iSettings parameter), TalkBack uses a hard-coded set of weights and targets, which assume a default character setup using 15 targets. These 15 targets correspond to 15 visemes in Appendix B The table of our default weights is also shown in Appendix B and can be found in the file DEFAULT_TARGET_MAP.INI, which ships with TalkBack. Note that editing of the DEFAULT_TARGET_MAP.INI will not cause changes in the default setup of TalkBack. This file is not used in TalkBack (unless it is specified as a mapping file in the fConfigFile field in TALKBACK_ANALYSIS_SETTINGS structure) and is provided only as a demonstration of the file format and as a starting point (for the end user) for creating other configuration files.

A typical call to TalkBackGetAnalysis is demonstrated in example 8-11.

Example 8-11: Getting an analysis object
// GETTING AN ANALYSIS OBJECT

TALKBACK_ANALYSIS* pAnalysis = NULL;

char soundFilePathName[] = "C:\\audiofile.wav";

char spokenText[] = "this is a test of the Talkbalk library";

TALKBACK_ANALYSIS_SETTINGS analysisSettings =

{

sizeof(analysisSettings),

30, // Frame rate in Hz (fps).

0, // Normal analysis.

-1, // Use time of day for random seed.

NULL // Use default phoneme-to-speech-target mapping.

};

TALKBACK_ERR err = TalkBackGetAnalysis(

 &pAnalysis,

 soundFilePathName,

 spokenText,

 &analysisSettings);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in pAnalysis.

}

The TALKBACK_ANALYSIS_SETTINGS data structure pointer may be NULL, in which case the default settings are used. Default values are as follows: 30 fps for fFrameRate, zero for fOptimizeForFlipbook, current time is used for fRandomSeed, and a hard-coded set of weights for 15 targets (as described in section 6.3 and Appendix B) is used for the phoneme-to-speech-target-mapping.

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object or sound file name is NULL.

	TALKBACK_STARTUP_NOT_CALLED
	TalkBackStartupLibrary() wasn’t called.

	TALKBACK_INVALID_PARAMETER_ERR
	One of the following occurred:

a) frame rate less than or equal to zero;

b) fSize filed in the TALKBACK_ANALYSIS_SETTINGS structure is not specified correctly;

c) the configuration file was specified in fConfigFile field of TALKBACK_ANALYSIS_SETTINGS structure, but this file does not exist.

	TALKBACK_COULD_NOT_LOAD_SOUND_ERR
	The sound file is invalid.

	TALKBACK_CORE_DATA_NOT_FOUND_ERR
	Core data files not found in specified directory.

	TALKBACK_INTERNAL_ERR
	An internal error occurred. May occur due to configuration problems

	TALKBACK_CONFIG_PARSE_ERROR
	Could not parse configuration file.

	TALKBACK_ANALYSIS_FAILED_ERR
	Analysis failed to complete on the specified sound file.

8.4.2 Freeing an analysis object

// Frees an opaque TALKBACK_ANALYSIS object. This releases all memory used by

// the analysis.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackFreeAnalysis(

 TALKBACK_ANALYSIS** ioAnalysis); // IN/OUT: analysis to free.

To free an analysis object, call TalkBackFreeAnalysis (see Example 8-12). NOTE: After freeing an analysis, all memory used by the analysis is freed. Therefore, you cannot pass a freed analysis to other library functions because it is no longer valid once it has been freed. TalkBackFreeAnalysis resets (clears) the analysis object pointer it receives to encourage this practice.

Example 8-12: Freeing an analysis object

// FREEING AN ANALYSIS OBJECT

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

TALKBACK_ERR err = TalkBackFreeAnalysis(

 &pAnalysis);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and reset (cleared) pAnalysis.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	The analysis object is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

8.5 Frame Functions

The functions described in sections 8.5.1–8.5.4 may be executed after calling TalkBackGetAnalysis to analyze a sound (see Section 1.2, Key Concepts and Definitions for more information on frames and frame rates and section 8.4, Analysis for more information on analysis).

8.5.1 Getting the first frame number

// Gets the first frame number.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetFirstFrameNum(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long* oResult); // OUT: number of the first frame.

To retrieve the number of the first frame in an analysis, call TalkBackGetFirstFrameNum, passing the previously completed analysis as the first parameter (Example 8-13). The result of the function is stored in the variable pointed to by the last parameter.

The first frame number is the number of the first frame that contains lip-synch data. This number might be less than zero. The start of the “zeroth” frame is the same time as the start of the sound file. Thus, negative frame numbers represent lip-synching information that occurs before the start of the sound file. The presence of such information indicates that in order to pronounce the first phoneme, the character had to begin moving its mouth before the first frame of the animation.

The frame numbers computed depend on the frame rate specified in the TALKBACK_ANALYSIS_SETTINGS parameter when TalkBackGetAnalysis was called to create the analysis. The default frame rate is 30 frames per second.

Example 8-13: Getting the first frame number

// GETTING THE FIRST FRAME NUMBER

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long firstFrameNum = 0;

TALKBACK_ERR err = TalkBackGetFirstFrameNum(

 pAnalysis,

 &firstFrameNum);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in firstFrameNum.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.5.2 Getting the last frame number

// Gets the last frame number.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetLastFrameNum(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long* oResult); // OUT: number of the last frame.

To retrieve the number of the last frame in an analysis, call TalkBackGetLastFrameNum, passing the result of the previously completed analysis as the first parameter (see Example 8-14). The result of the function is stored in the variable pointed to by the last parameter.

The last frame number is the number of the last frame that contains lip-synch data. The frame numbers computed depend on the frame rate specified in the TALKBACK_ANALYSIS_SETTINGS parameter when TalkBackGetAnalysis was called to create the analysis. The default frame rate is 30 frames per second.

Note that the last frame number may be beyond the end of the sound file. This will occur when the sound file ends before the character would have closed its mouth.
Example 8-14: Getting the last frame number

// GETTING THE LAST FRAME NUMBER

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long lastFrameNum = 0;

TALKBACK_ERR err = TalkBackGetLastFrameNum(

 pAnalysis,

 &lastFrameNum);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in lastFrameNum.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.5.3 Getting a frame start time

// Gets the start time of the specified frame.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetFrameStartTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iFrameNum, // IN: frame number

 double* oResult); // OUT: start time of the frame in seconds.

To retrieve the start time of a particular frame in an analysis, call TalkBackGetFrameStartTime, passing the previously completed analysis as the first parameter (see Example 8-15). The result of the function is stored in the variable pointed to by the last parameter.

The frame start time is in seconds, where 0.0 represents the start of the sound file itself. Negative numbers represent time before the start of the sound file.

Example 8-15: Getting a frame start time

// GET A FRAME START TIME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long frameNum = 20;
// example

double startTimeSec = 0.0;

TALKBACK_ERR err = TalkBackGetFrameStartTime(

 pAnalysis,

 frameNum,

 &startTimeSec);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in startTimeSec.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	Frame with the specified index does not exist.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.5.4 Getting a frame end time

// Gets the end time of the specified frame.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetFrameEndTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iFrameNum, // IN: frame number.

 double* oResult); // OUT: end time of the frame in seconds.

To retrieve the end time of each frame of an analysis, call TalkBackGetFrameEndTime, passing the previously completed analysis as the first parameter (see Example 8-16). The result of the function is stored in the variable pointed to by the last parameter.

The frame end time is a double-length floating point value in seconds. The specified frame number must be between minFrame and maxFrame, where minFrame and maxFrame are the first and last frame numbers returned by TalkBackGetFirstFrameNum (see section 8.5.1, Getting the first frame number) and TalkBackGetLastFrameNum, respectively (see section 8.5.2, Getting the last frame number).

Example 8-16: Getting a frame end time

// GETTING A FRAME END TIME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long frameNum = 20; // example

double endTimeSec = 0.0;

TALKBACK_ERR err = TalkBackGetFrameEndTime(

 pAnalysis,

 frameNum,

 &endTimeSec);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in endTimeSec.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	Frame with the specified index does not exist.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.6 Phoneme Functions

The functions described in sections 8.6.1–8.6.4 may be executed after calling TalkBackGetAnalysis to analyze a sound (see section 8.4, Analysis).

8.6.1 Getting the number of phonemes

// Gets the number of phonemes.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetNumPhonemes(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long* oResult); // OUT: number of phonemes.

To retrieve the number of phonemes in an analysis, call TalkBackGetNumPhonemes, passing the previously completed analysis as the first parameter (see Example 8-17). The result of the function is stored in the variable pointed to by the last parameter.

The number of phonemes is the number of distinct non-overlapping segments of time that represent a recognized phoneme. NOTE: Silence is counted as a phoneme. For a list of phonemes, see the library header file TalkBack.h or Appendix A of this reference guide.

Example 8-17: Getting the number of phonemes

// GETTING THE NUMBER OF PHONEMES

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long numPhonemes = 0;

TALKBACK_ERR err = TalkBackGetNumPhonemes(

 pAnalysis,

 &numPhonemes);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in numPhonemes.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.6.2 Getting the enumeration of a phoneme

// Gets the enumeration of the specified phoneme.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetPhonemeEnum(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iPhonemeNum, // IN: phoneme number.

 TALKBACK_PHONEME* oResult); // OUT: enumeration of the specified phoneme.

To retrieve the enumeration represented by a particular phoneme in an analysis, call TalkBackGetPhonemeEnum, passing the previously completed analysis as the first parameter (see Example 8‑18). The result of the function is stored in the variable pointed to by the last parameter.

The desired phoneme number must be passed as a parameter, and the specified phoneme number must be between 0 and numPhonemes-1, where numPhonemes is the number of phonemes returned by TalkBackGetNumPhonemes (see section 8.6.1, Getting the number of phonemes).

The phoneme value returned will be an integer between TALKBACK_PHONEME_FIRST and TALKBACK_PHONEME_LAST, inclusively. The specific phoneme constants are listed in TalkBack.h (e.g., TALKBACK_PHONEME_IY indicates the IY phoneme, etc.) and the phonemes themselves are listed Appendix A of this reference guide.

Example 8-18: Getting the enumeration of a phoneme

// GETTING THE ENUMERATION OF A PHONEME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long phonemeNum = 20;
// example

TALKBACK_PHONEME tbPhoneme = TALKBACK_PHONEME_INVALID;

TALKBACK_ERR err = TalkBackGetPhonemeEnum(

 pAnalysis,

 phonemeNum,

 &tbPhoneme);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in tbPhoneme.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	Phoneme with the specified index does not exist.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.6.3 Getting a phoneme start time

// Gets the start time of the specified phoneme.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetPhonemeStartTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iPhonemeNum, // IN: phoneme.

 double* oResult); // OUT: start time of the phoneme in seconds.

To retrieve the start time of each phoneme in an analysis, call TalkBackGetPhonemeStartTime, passing the previously completed analysis as the first parameter (see Example 8-19). The result of the function is stored in the variable pointed to by the last parameter.

The desired phoneme number must be passed as a parameter, and the specified phoneme number must be between 0 and numPhonemes-1, where numPhonemes is the number of phonemes returned by TalkBackGetNumPhonemes (see section 8.6.1, Getting the number of phonemes).

Example 8-19: Getting a phoneme start time

// GET A PHONEME START TIME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long phonemeNum = 20;
// example

double startTimeSec = 0.0;

TALKBACK_ERR err = TalkBackGetPhonemeStartTime(

 pAnalysis,

 phonemeNum,

 &startTimeSec);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in startTimeSec.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	Phoneme with the specified index does not exist.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.6.4 Getting a phoneme end time

// Gets the end time of the specified phoneme.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetPhonemeEndTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iPhonemeNum, // IN: phoneme.

 double* oResult); // OUT: end time of the phoneme in seconds.

To retrieve the end time of each phoneme in an analysis, call TalkBackGetPhonemeEndTime, passing the previously completed analysis as the first parameter (see Example 8-20). The result of the function is stored in the variable pointed to by the last parameter.

The desired phoneme number must be passed as a parameter, and the specified phoneme number must be between 0 and numPhonemes-1, where numPhonemes is the number of phonemes returned by TalkBackGetNumPhonemes (see section 8.6.1, Getting the number of phonemes).

Example 8-20: Getting a phoneme end time

// GETTING A PHONEME END TIME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long phonemeNum = 20;
// example

double endTimeSec = 0.0;

TALKBACK_ERR err = TalkBackGetPhonemeEndTime(

 pAnalysis,

 phonemeNum,

 &endTimeSec);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in endTimeSec.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	Phoneme with the specified index does not exist.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.7 Phoneme Editing Functions

The functions described in sections 8.7.1–8.7.5 may be executed after calling TalkBackGetAnalysis to analyze a sound (see section 8.4, Analysis). These functions can be used to modify the phoneme list returned by TalkBackGetAnalysis. If the phoneme list returned by TalkBackGetAnalysis is inaccurate, you can use the routines in this section to correct it before extracting the lip-synching information.

TalkBackGetAnalysis returns an opaque analysis object, one component of which is the phoneme list. The phoneme list is an ordered list of the phonemes that were spoken in the sound. Each phoneme in a phoneme list has a start time, an end time, and a phoneme enumeration. You can change these properties, and insert or delete phonemes with the routines in this section. After you modify the phoneme list in an analysis object, the lip-synching information returned from that analysis object will be based on the new (modified) phoneme list. Gesture information will not be affected by changes to the phoneme list. After you modify a phoneme list, the start frame and end frame numbers may be different.

8.7.1 Inserting a phoneme

// Inserts a phoneme at the specified position in the specified manner.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackInsertPhoneme(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 TALKBACK_PHONEME iPhoneme, // IN: enumeration of phoneme to insert.

 long iInsertPosition, // IN: phoneme number to split.

 int iInsertBefore); // IN: manner of insertion:

 // 0 means put phoneme after insert position;

 // 1 means put phoneme before insert position.

TalkBackInsertPhoneme is used to insert a phoneme into an opaque analysis object previously filled in by TalkBackGetAnalysis.

The phoneme number specified by iInsertPosition must be between 0 and numPhonemes - 1, where numPhonemes is the number of phonemes returned by TalkBackGetNumPhonemes (see section 8.6.1, Getting the number of phonemes).

The phoneme enumeration specified by iPhoneme must be between TALKBACK_PHONEME_FIRST and TALKBACK_PHONEME_LAST. These constants are defined in TalkBack.h. Constants for each individual phoneme are defined in TalkBack.h.

The phoneme number specified by iInsertPosition is split in half by this routine. If that phoneme is less than twice the minimum phoneme length of 16 milliseconds, this routine fails because the phoneme cannot be split. If iInsertBefore is set to one, the first half of the split phoneme is set to iPhoneme. If iInsertBefore is set to zero, the second half of the split phoneme is set to iPhoneme.

If the phoneme list is empty, the iInsertPosition and iInsertBefore parameters are ignored, and the phoneme is inserted with a start time of 0 and an end time of 160 milliseconds.

Consult Example 8-21 for a demonstration of inserting a phoneme using this routine.

Example 8-21: Inserting a phoneme

// INSERTING A PHONEME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

TALKBACK_PHONEME insertPhoneme = TALKBACK_PHONEME_EY; // example

long atPhonemeNum = 4; // example

int insertBefore = 1; // 1 = insert before position, 0 = insert after position

TALKBACK_ERR err = TalkBackInsertPhoneme(

 pAnalysis,

 insertPhoneme,

 atPhonemeNum,

 insertBefore);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // No error, continue...

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL.

	TALKBACK_STARTUP_NOT_CALLED
	TalkBackStartupLibrary() wasn’t called.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_ERROR
	The specified phoneme cannot be split (see explanations above) because it is too short, or a general error occurred.

	TALKBACK_INVALID_INDEX_ERR
	The insert position is not valid.

	TALKBACK_INVALID_PARAMETER_ERR
	The enumeration of phoneme to insert is not valid.

8.7.2 Deleting a phoneme

// Deletes the specified phoneme.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackDeletePhoneme(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iPhonemeToDelete); // IN: phoneme number to delete.

TalkBackDeletePhoneme is used to remove a phoneme from an opaque analysis object previously filled in by using TalkBackGetAnalysis.

The phoneme number specified by iPhonemeToDelete must be between 0 and numPhonemes - 1, where numPhonemes is the number of phonemes returned by TalkBackGetNumPhonemes (see section 8.6.1, Getting the number of phonemes).

Because a phoneme list must not have gaps, the phonemes before and after a deleted phoneme are lengthened to fill in the span previously occupied by the deleted phoneme. The end time of the previous phoneme and the start time of the following phoneme are set to the middle of the deleted phoneme’s span.

Consult Example 8-22 for a demonstration of deleting phonemes using this code.

Example 8-22: Deleting a phoneme

// DELETING A PHONEME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long phonemeToDelete = 4;
// example

TALKBACK_ERR err = TalkBackDeletePhoneme(pAnalysis, phonemeToDelete);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // No error, continue...

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL.

	TALKBACK_STARTUP_NOT_CALLED
	TalkBackStartupLibrary() wasn’t called.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_ERROR
	A general error has occurred.

	TALKBACK_INVALID_INDEX_ERR
	The delete position is not valid.

8.7.3 Changing the start time of a phoneme

// Changes the start time of the specified phoneme.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackChangePhonemeStart(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iPhonemeToChange, // IN: phoneme number to change.

 double* ioNewTime); // IN/OUT: new start time value in seconds (in);

 // actual start time (out).

TalkBackChangePhonemeStart is used to change the start time of a phoneme from an opaque analysis object previously filled in by TalkBackGetAnalysis.

The phoneme number specified by iPhonemeToChange must be between 0 and numPhonemes - 1, where numPhonemes is the number of phonemes returned by TalkBackGetNumPhonemes (see section 8.6.1, Getting the number of phonemes).

When you change the start time of a phoneme, the end time of the previous phoneme will be changed automatically to match.

The start time you specify may not be the start time actually set, most notably if the specified start time will make the phoneme too short. The ioNewTime parameter is an input/output parameter so you can detect this. The start time actually used is returned in ioNewTime so the caller can check the result without having to query the phoneme.
Consult Example 8-23 for a demonstration of changing the start time of a phoneme using this code.

Example 8-23: Changing the start time of a phoneme

// CHANGING THE START TIME OF A PHONEME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long phonemeToChange = 4; // example

double newStartTimeSec = 20.32; // example

TALKBACK_ERR err = TalkBackChangePhonemeStart(

 pAnalysis,

 phonemeToChange,

 &newStartTimeSec);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in newStartTimeSec with the actual start time.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success. Remember to check the start time (ioNewTime) parameter to see what the actual start time is.

	TALKBACK_NULL_PARAMETER_ERR
	ioNewTime is NULL or iAnalysis is NULL.

	TALKBACK_STARTUP_NOT_CALLED
	TalkBackStartupLibrary() wasn’t called.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_ERROR
	A general error has occurred.

	TALKBACK_INVALID_INDEX_ERR
	The change position is not valid.

8.7.4 Changing the end time of a phoneme

// Changes the end time of the specified phoneme.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackChangePhonemeEnd(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iPhonemeToChange, // IN: phoneme number to change.

 double* ioNewTime); // IN/OUT: new end time value in seconds (in);

 // actual end time (out).

TalkBackChangePhonemeEnd is used to change the start time of a phoneme from an opaque analysis object previously filled in by TalkBackGetAnalysis.

The phoneme number specified by iPhonemeToChange must be between 0 and numPhonemes - 1, where numPhonemes is the number of phonemes returned by TalkBackGetNumPhonemes (see section 8.6.1, Getting the number of phonemes).

When you change the end time of a phoneme, the start time of the next phoneme will be changed automatically to match.

The end time you specify may not be the end time actually set, most notably if the specified end time will make the phoneme too short. The ioNewTime parameter is an input/output parameter so you can detect this. The end time actually used is returned in ioNewTime so you can check the result without having to query the phoneme.
Consult Example 8-24 for a demonstration of changing a phoneme’s end time using this code.

Example 8-24: Changing the end time of a phoneme

// CHANGING THE END TIME OF A PHONEME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long phonemeToChange = 4; // example

double newEndTimeSec = 21.64; // example

TALKBACK_ERR err = TalkBackChangePhonemeEnd(

 pAnalysis,

 phonemeToChange,

 &newEndTimeSec);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in newEndTimeSec with the actual end time.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success. Remember to check the end time (ioNewTime) parameter to see what the actual end time is.

	TALKBACK_NULL_PARAMETER_ERR
	ioNewTime is NULL or iAnalysis is NULL.

	TALKBACK_STARTUP_NOT_CALLED
	TalkBackStartupLibrary() wasn’t called.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_ERROR
	A general error has occurred.

	TALKBACK_INVALID_INDEX_ERR
	The change position is not valid.

8.7.5 Changing the enumeration of a phoneme

// Changes the enumeration of the specified phoneme.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackChangePhonemeEnum(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iPhonemeToChange, // IN: phoneme number to change.

 TALKBACK_PHONEME iNewPhoneme); // IN: new phoneme enumeration.

TalkBackChangePhonemeEnum is used to change a phoneme’s enumeration from an opaque analysis object previously filled in by TalkBackGetAnalysis.

The phoneme number specified by iPhonemeToChange must be between 0 and numPhonemes - 1, where numPhonemes is the number of phonemes returned by TalkBackGetNumPhonemes (see section 8.6.1, Getting the number of phonemes).

The phoneme enumeration specified by iNewPhoneme must be between TALKBACK_PHONEME_FIRST and TALKBACK_PHONEME_LAST. These constants are defined in TalkBack.h. Constants for each individual phoneme are defined in TalkBack.h.

Consult Example 8-25 for a demonstration of changing a phoneme in a phoneme using this code.

Example 8-25: Changing the enumeration of a phoneme

// CHANGING THE ENUMERATION OF A PHONEME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long phonemeToChange = 4; // example

TALKBACK_PHONEME newPhoneme = TALKBACK_PHONEME_AA; // example

TALKBACK_ERR err = TalkBackChangePhonemeEnum(

 pAnalysis,

 phonemeToChange,

 newPhoneme);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // No error, continue...

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL.

	TALKBACK_STARTUP_NOT_CALLED
	TalkBackStartupLibrary() wasn’t called.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_ERROR
	A general error has occurred.

	TALKBACK_INVALID_INDEX_ERR
	The change position is not valid.

	TALKBACK_INVALID_PARAMETER_ERR
	The enumeration to assign to the phoneme is not a valid phoneme enumeration.

8.8 Word Functions

The functions described in the following sections may be called after calling TalkBackGetAnalysis to analyze a sound (see section 8.4.1, Getting an analysis object). NOTE that these functions are only useful if text was provided to TalkBackGetAnalysis (see section 8.3.2, Checking optional text)—incorrect results and/or errors may be returned if the analysis was done in textless mode.

8.8.1 Getting the number of words

// Gets the number of words.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetNumWords(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long* oResult); // OUT: number of words.

Get the number of words in a text-based analysis by calling TalkBackGetNumWords, passing the previously completed analysis as the first parameter (see Example 8-26). The result of the function is stored in the variable pointed to by the last parameter.

The number of words returned may not exactly match the number of words passed to TalkBackGetAnalysis. Specifically, a span of silence may be counted as a word and returned as the word “<SIL>”. See Section 8.8.2, Getting the text of a word.

 Example 8-26: Getting the number of words

// GETTING THE NUMBER OF WORDS

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long numWords = 0;

TALKBACK_ERR err = TalkBackGetNumWords(pAnalysis, &numWords);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in numWords.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.8.2 Getting the text of a word

// Gets the text of the specified word.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetWord(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iWordNum, // IN: word.

 long iMaxChars, // IN: size of word buffer.

 char* oWord); // OUT: word buffer.

To get the text of each word in a text-based sound analysis, call TalkBackGetWord, passing the previously completed analysis as the first parameter (see Example 8-27). The result of the function is stored in the variable pointed to by the last parameter.

The specified word number must be between 0 and numWords - 1, where numWords is the number of words returned by TalkBackGetNumWords (see section 8.8.1, Getting the number of words).

The text returned will always be composed of all capital letters, even if the text was not all capital letters when it was initially passed to TalkBackGetAnalysis.

TalkBackGetWord may return “<SIL>” as a word. This represents a span of silence in the sound file that may be as short as 16 milliseconds.

Example 8-27: Getting the text of a word

// GETTING THE TEXT OF A WORD

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long wordNum = 20; // example

char wordText[256] = "";

TALKBACK_ERR err = TalkBackGetWord(pAnalysis, wordNum, sizeof(wordText), wordText);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in wordText.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	Word with the specified index does not exist.

	TALKBACK_INVALID_PARAMETER_ERR
	The size of the word buffer is zero or negative.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.8.3 Getting the start time of a word

// Gets the start time of the specified word.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetWordStartTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iWordNum, // IN: word.

 double* oResult); // OUT: start time of the word in seconds.

To get the start time of each word in a text-based sound analysis, call TalkBackGetWordStartTime, passing the previously completed analysis as the first parameter (see Example 8-28). The result of the function is stored in the variable pointed to by the last parameter.

The specified word number must be between 0 and numWords - 1, where numWords is the number of words returned by TalkBackGetNumWords (see section 8.8.1, Getting the number of words).

Example 8-28: Getting the start time of a word

// GETTING THE START TIME OF A WORD

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long wordNum = 20; // example

double wordStartTimeSec = 0.0;

TALKBACK_ERR err = TalkBackGetWordStartTime(

 pAnalysis,

 wordNum,

 &wordStartTimeSec);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in wordStartTimeSec.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	Word with the specified index does not exist.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.8.4 Getting the end time of a word

// Gets the end time of the specified word.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetWordEndTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iWordNum, // IN: word.

 double* oResult); // OUT: end time of the word in seconds.

To get the end time of each word in a text-based sound analysis, call TalkBackGetWordEndTime, passing the previously completed analysis as the first parameter (see Example 8-29). The result of the function is stored in the variable pointed to by the last parameter.

The specified word number must be between 0 and numWords-1, where numWords is the number of words returned by TalkBackGetNumWords (see section 8.8.1, Getting the number of words).

Example 8-29: Getting the end time of a word

// GETTING THE END TIME OF A WORD

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long wordNum = 20; // example

double wordEndTimeSec = 0.0;

TALKBACK_ERR err = TalkBackGetWordEndTime(

 pAnalysis,

 wordNum,

 &wordEndTimeSec);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in wordEndTimeSec.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	Word with the specified index does not exist.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.9 Speech Target Functions

The functions described in the following sections may be called after calling TalkBackGetAnalysis to analyze a sound (see section 8.4.1, Getting an analysis object).

8.9.1 Getting the number of speech target tracks

// Gets the number of speech target tracks.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetNumSpeechTargetTracks(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long* oResult); // OUT: number of speech target tracks.

To get the number of speech target tracks, call TalkBackGetNumSpeechTargetTracks, passing the previous analysis as the first parameter (see Example 8-30). The result of the function is stored in the variable pointed to by the last parameter.

Example 8-30: Getting the number of speech target tracks

// GETTING THE NUMBER OF SPEECH TARGET TRACKS

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long numTargetTracks = 0;

TALKBACK_ERR err = TalkBackGetNumSpeechTargetTracks(

 pAnalysis,

 &numTargetTracks);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in numTargetTracks.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.9.2 Getting the number of speech target keys for a track

// Gets the number of keys in the specified speech target track.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetNumSpeechTargetKeys(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iTrackNum, // IN: speech target track.

 long* oResult); // OUT: number of keys in the speech target track.

To get the number of speech target keys for a track, call TalkBackGetNumSpeechTargetKeys, passing the previously completed analysis as the first parameter (see Example 8-31). The result of the function is stored in the variable pointed to by the last parameter.

The specified speech target track number must be between 0 and numSpeechTargetTracks - 1, where numSpeechTargetTracks is the number of tracks returned by TalkBackGetNumSpeechTargetTracks (see section 8.9.1, Getting the number of speech target tracks).

For the default mapping, the speech target track values have corresponding constants in TalkBack.h which describe the speech target that track number represents: track 0 is TALKBACK_SPEECH_TARGET_SILENCE, track 1 is TALKBACK_SPEECH_TARGET_EAT, etc.
Example 8-31: Getting the number of speech target keys for a track

// GETTING THE NUMBER OF SPEECH TARGET KEYS FOR A TRACK

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long targetTrackNum = 20; // example

long numTargetKeys = 0;

TALKBACK_ERR err = TalkBackGetNumSpeechTargetKeys(

 pAnalysis,

 targetTrackNum,

 &numTargetKeys);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in numTargetKeys.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number is less than zero or exceeds the total number of tracks available.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.9.3 Getting speech target key info

// Gets key information (time, value, derivative in, and derivative out) for the

// specified key in the specified speech target track.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetSpeechTargetKeyInfo(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iTrackNum, // IN: speech target track.

 long iKeyNum, // IN: speech target key.

 double* oTime, // OUT: time of key.

 double* oValue, // OUT: value of key.

 double* oDerivativeIn, // OUT: incoming derivative of key.

 double* oDerivativeeOut); // OUT: outgoing derivative of key.

Get all the info for a particular speech target key by calling TalkBackGetSpeechTargetKeyInfo, passing the previous analysis as the first parameter (see Example 8-32). The result of the function is stored in the variables pointed to by the last four parameters.
The specified speech target track number must be between 0 and numSpeechTargetTracks - 1, where numSpeechTargetTracks is the number of speech target tracks returned by TalkBackGetNumSpeechTargetTracks (see section 8.9.1, Getting the number of speech target tracks).

For the default mapping, the speech target track values have corresponding constants in TalkBack.h which describe the speech target that track number represents: track 0 is TALKBACK_SPEECH_TARGET_SILENCE, track 1 is TALKBACK_SPEECH_TARGET_EAT, etc.
The specified key number must be between 0 and numKeys - 1, where numKeys is the number of keys returned by the TalkBackGetNumSpeechTargetKeys function for that particular speech target track (see section 8.9.2, Getting the number of speech target keys for a track).

This is the most efficient format for data returned from the analysis object. Called for each key and for each track, TalkBackGetSpeechTargetKeyInfo provides data similar to what would be generated by hand by a professional animator (i.e., with the minimum number of keys necessary to define the function curves). The client application must be able to interpolate the speech target’s weight between the keys provided by generating the appropriate function curve from the derivative in/out values.

The time value returned is a floating-point number representing the time in seconds for that key.

The target value returned is a floating-point number representing the weight of that target at that key.

The values for the incoming and outgoing derivatives are derived from the Bezier spline at each key. For the time being, the values of both derivatives coincide, but in future releases of TalkBack, the condition of the continuous first derivative may not be true. Thus, TalkBack provides both left (incoming) and right (outgoing) derivatives for future compatibility. The derivative is measured in the track units per millisecond.

The incoming and outgoing derivatives can usually be mapped to an incoming and outgoing slope respectively, but if desired, ignoring the derivatives and setting slopes to zero can provide an approximation of the function curves for lip-synching. However, this approximation will degrade as the number of speech targets decreases and the speed of the speech increases. Linear interpolation becomes very inaccurate but can still provide some illusion of speech. However, it is always preferable to use the actual derivative values to generate accurate function curves.

Example 8-32: Getting speech target key info

// GETTING SPEECH TARGET KEY INFO (TIME, VALUE, DERIVATIVE IN, DERIVATIVE OUT)

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long trackNum = 2; // example

long keyNum = 4; // example

double targetTimeSec = 0.0;

double targetValue = 0.0;

double targetDerivativeIn = 0.0;

double targetDerivativeOut = 0.0;

TALKBACK_ERR err = TalkBackGetSpeechTargetKeyInfo(

 pAnalysis,

 trackNum,

 keyNum,

 &targetTimeSec,

 &targetValue,

 &targetDerivativeIn,

 &targetDerivativeOut);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in targetTimeSec, targetValue,

 // targetDerivativeIn, and targetDerivativeOut.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number or key number is less than zero or exceeds the total number of tracks or keys available.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.9.4 Getting a speech target value at a frame

// Gets the value of the function curve for a speech target integrated over the

// specified frame.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetSpeechTargetValueAtFrame(

 TALKBACK_ANALYSIS* iAnalysis, // IN: opaque analysis object returned by TalkBackGetAnalysis().

 long iTrackNum, // IN: speech target track.

 long iFrameNum, // IN: frame number.

 double* oResult); // OUT: value of function curve integrated over frame.

To get the value of a speech target at a particular frame, call TalkBackGetSpeechTargetValueAtFrame, passing the previous analysis as the first parameter (see Example 8-33). The result of the function is stored in the variable pointed to by the last parameter.
This function calculates the average value of the function curve (via integration) during this frame of animation. Compare with TalkBackGetSpeechTargetValueAtTime, which returns the instantaneous value.

This function might be used to get the value of a target at every frame, removing the need for the client application to perform any interpolation. This generates far more data (a key at every frame in every track) than TalkBackGetSpeechTargetKeyInfo, however.

The specified speech target track number must be between 0 and numSpeechTargetTracks - 1, where numSpeechTargetTracks is the number of speech target tracks returned by TalkBackGetNumSpeechTargetTracks (see section 8.9.1, Getting the number of speech target tracks).

For the default mapping, the speech target track values have corresponding constants in TalkBack.h which describe the speech target that track number represents: track 0 is TALKBACK_SPEECH_TARGET_SILENCE, track 1 is TALKBACK_SPEECH_TARGET_EAT, etc.
The specified frame number must be between minFrame and maxFrame, where minFrame and maxFrame are the first and last frame numbers returned by TalkBackGetFirstFrameNum and TalkBackGetLastFrameNum, respectively (see sections 8.5.1, Getting the first frame number and 8.5.2, Getting the last frame number, respectively).

The target value returned is a floating-point number representing the weight of that target at that frame.

Example 8-33: Getting a speech target value at a frame
// GETTING A SPEECH TARGET VALUE AT A FRAME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long trackNum = 2; // example

long frameNum = 4; // example

double speechTargetValue = 0.0;

TALKBACK_ERR err = TalkBackGetSpeechTargetValueAtFrame(

 pAnalysis,

 trackNum,

 frameNum,

 &speechTargetValue);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in speechTargetValue.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number or frame number is out of range.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.9.5 Getting the dominant speech target at a frame

// Gets the dominant speech target at the specified frame.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code TalkBackGetDominantSpeechTargetAtFrame(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis from TalkBackGetAnalysis

 long iFrameNum, // IN: frame number.

 TALKBACK_SPEECH_TARGET* oSpeechTarget); // OUT: dominant speech target.

To get the value of the dominant speech target at a particular frame, call TalkBackGetDominantSpeechTargetAtFrame, passing the previous analysis as the first parameter (see Example 8-34). The result of the function is stored in the variable pointed to by the last parameter.
This function is primarily for flipbook animation. See Key Concepts and Definitions for a description of flipbook animation. See section 6.6, Mapping for Flipbook Animation, for further notes on dominant targets and flipbook animation. It is recommended to set fOptimizeForFlipbook field to 1 in the TALKBACK_ANALYSIS_SETTINGS structure before calling TalkBackGetAnanlysis function if you are planning to call TalkBackGetDominantSpeechTargetAtFrame function later on that analysis object.

The specified frame number must be between minFrame and maxFrame, where minFrame and maxFrame are the first and last frame numbers returned by TalkBackGetFirstFrameNum and TalkBackGetLastFrameNum, respectively (see sections 8.5.1, Getting the first frame number and 8.5.2, Getting the last frame number, respectively).

The dominant speech target value returned is a track number and will be between 0 and numSpeechTargetTracks - 1, where numSpeechTargetTracks is the number of speech target tracks returned by TalkBackGetNumSpeechTargetTracks (see section 8.9.1, Getting the number of speech target tracks).

There is a case however when the returned track number will be negative. There is no “silence” track in TalkBack. Thus, when the neutral (silent) object is the most appropriate for the given frame, the value of oSpeechTarget parameter is equal to –1 upon return from the TalkBackGetDominantSpeechTargetAtFrame function.
For the default mapping, the speech target track values have corresponding constants in TalkBack.h which describe the speech target that track number represents: track 0 is TALKBACK_SPEECH_TARGET_SILENCE, track 1 is TALKBACK_SPEECH_TARGET_EAT, etc.
Example 8-34: Getting the dominant speech target at a frame
// FLIPBOOK MODE: GETTING THE DOMINANT SPEECH TARGET AT A FRAME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long frameNum = 4; // example

TALKBACK_SPEECH_TARGET dominantSpeechTarget = TALKBACK_SPEECH_TARGET_INVALID;

TALKBACK_ERR err = TalkBackGetDominantSpeechTargetAtFrame(

 pAnalysis,

 frameNum,

 &dominantSpeechTarget);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in dominantSpeechTarget.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number or frame number is out of range.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.9.6 Getting a speech target value at a time

// Gets the value of the function curve for the specified speech target track at

// the specified time.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetSpeechTargetValueAtTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iTrackNum, // IN: speech target track.

 double iTime, // IN: time in seconds.

 double* oResult); // OUT: value of the function curve.

To get the value of a speech target at a particular time, call TalkBackGetSpeechTargetValueAtTime, passing the previous analysis as the first parameter (see Example 8-35). The result of the function is stored in the variable pointed to by the last parameter.
This function returns the exact value of the function curve at this instant in time. Compare this with TalkBackGetSpeechTargetValueAtFrame, which returns the averaged value for a frame. This allows the client application access to the weight of a target at any instant in time without having to perform any interpolation. In combination with TalkBackGetSpeechTargetDerivativesAtTime, this call provides the same information as TalkBackGetSpeechTargetKeyInfo, but at any time, not just where TalkBack places keys.

The specified speech target track number must be between 0 and numSpeechTargetTracks - 1, where numSpeechTargetTracks is the number of speech target tracks returned by TalkBackGetNumSpeechTargetTracks (see section 8.9.1, Getting the number of speech target tracks).

For the default mapping, the speech target track values have corresponding constants in TalkBack.h which describe the speech target that track number represents: track 0 is TALKBACK_SPEECH_TARGET_SILENCE, track 1 is TALKBACK_SPEECH_TARGET_EAT, etc.
The speech target value returned is a floating-point number representing the weight of that speech target at the given time. If the specified time is outside the range where lip-synching animation is defined, zero is returned.

Example 8-35: Getting a speech target value at a time
// GETTING A SPEECH TARGET VALUE AT A TIME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long trackNum = 4; // example

double requestTimeSec = 20.32; // example

double targetValue = 0.0;

TALKBACK_ERR err = TalkBackGetSpeechTargetValueAtTime(

 pAnalysis,

 trackNum,

 requestTimeSec,

 &targetValue);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in targetValue.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number is less than zero or exceeds the total number of tracks available.

	TALKBACK_INVALID_TIME_ERR
	The time is out of range.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.9.7 Getting the speech target function curve derivatives at a time

// Gets the derivatives of the function curve for the specified speech target

// track at the specified time.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetSpeechTargetDerivativesAtTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iTrackNum, // IN: speech target track.

 double iTime, // IN: time in seconds.

 double* oDerivativeIn, // OUT: incoming derivative of the function curve.

 double* oDerivativeOut); // OUT: outgoing derivative of the function curve.

To get the function curve derivatives of a speech target at a particular time, call TalkBackGetSpeechTargetDerivativesAtTime, passing the previous analysis as the first parameter (see Example 8-36). The result of the function is stored in the variables pointed to by the last two parameters.
This function allows the client application access to the derivative of a target’s function curve at any instant in time. In combination with TalkBackGetSpeechTargetValueAtTime this call provides the same information as TalkBackGetSpeechTargetKeyInfo, but at any time, not just where TalkBack places keys.
The specified speech track number must be between 0 and numSpeechTargetTracks-1, where numSpeechTargetTracks is the number of speech target tracks returned by TalkBackGetNumSpeechTargetTracks (see section 8.9.1, Getting the number of speech target tracks).

For the default mapping, the speech target track values have corresponding constants in TalkBack.h which describe the speech target that track number represents: track 0 is TALKBACK_SPEECH_TARGET_SILENCE, track 1 is TALKBACK_SPEECH_TARGET_EAT, etc.
The values for the incoming and outgoing derivatives are derived from the Bezier spline at the specified time. If the specified time is outside the range where lip-synching animation is defined, zero is returned for the values of both derivatives. For the time being, the values of both derivatives coincide, but in future releases of TalkBack, the condition of the continuous first derivative may not be true. Thus, TalkBack provides both left (incoming) and right (outgoing) derivatives for future compatibility. The derivative is measured in the track units per millisecond.
The incoming and outgoing derivatives can usually be mapped to an incoming and outgoing slope respectively, but if desired, ignoring the derivatives and setting slopes to zero can provide an approximation of the function curves for lip-synching. However, this approximation will degrade as the number of speech targets decreases and the speed of the speech increases. Linear interpolation becomes very inaccurate but can still provide some illusion of speech. However, it is always preferable to use the actual derivative values to generate accurate function curves.

Example 8-36: Getting the speech target function curve derivatives at a time
// GETTING THE SPEECH TARGET FUNCTION CURVE DERIVATIVES AT A TIME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long trackNum = 4; // example

double requestTimeSec = 20.64; // example

double derivativeIn = 0.0;

double derivativeOut = 0.0;

TALKBACK_ERR err = TalkBackGetSpeechTargetDerivativesAtTime(

 pAnalysis,

 trackNum,

 requestTimeSec,

 &derivativeIn,

 &derivativeOut);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in derivativeIn and derivativeOut.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number is less than zero or exceeds the total number of tracks available.

	TALKBACK_INVALID_TIME_ERR
	The time is out of range.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.10 Gesture Functions

The functions described in sections 8.10.1–8.10.3 may be called after calling TalkBackGetAnalysis to analyze a sound (see section 8.4.1, Getting an analysis object).

8.10.1 Getting the number of gesture tracks

// Gets the number of gesture tracks.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetNumGestureTracks(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long* oResult); // OUT: number of gesture tracks

To get the number of gesture tracks in an analysis, call TalkBackGetNumGestureTracks, passing the previous analysis as the first parameter (see Example 8-37). The result of the function is stored in the variable pointed to by the last parameter.

Example 8-37: Getting the number of gesture tracks

// GETTING THE NUMBER OF GESTURE TRACKS

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long numGestureTracks = 0;

TALKBACK_ERR err = TalkBackGetNumGestureTracks(

 pAnalysis,

 &numGestureTracks);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in numGestureTracks.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.10.2 Getting the number of gesture keys for a track

// Gets the number of keys in the specified gesture track.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetNumGestureKeys(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iTrackNum, // IN: gesture track.

 long* oResult); // OUT: number of keys in the gesture track.

To get the number of gesture keys for a track, call TalkBackGetNumGestureKeys, passing the previous analysis as the first parameter (see Example 8-38). The result of the function is stored in the variable pointed to by the last parameter.

The specified gesture track number must be between 0 and numGestureTracks - 1, where numGestureTracks is the number of gesture tracks returned by TalkBackGetNumGestureTracks (see section 8.10.1, Getting the number of gesture tracks).

Gesture track values have corresponding constants in TalkBack.h which describe the gesture that track number represents: track 0 is TALKBACK_GESTURE_EYEBROW_RAISE_LEFT, track 1 is TALKBACK_GESTURE_EYEBROW_RAISE_RIGHT, etc.

Example 8-38: Getting the number of gesture keys for a track
// GETTING THE NUMBER OF GESTURE KEYS FOR A TRACK

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long trackNum = 4; // example

long numGestureKeys = 0;

TALKBACK_ERR err = TalkBackGetNumGestureKeys(

 pAnalysis,

 trackNum,

 &numGestureKeys);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in numGestureKeys.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number is less than zero or exceeds the total number of tracks available.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.10.3 Getting gesture key info

// Gets key information (time, value, derivative in, and derivative out) for the

// specified key in the specified gesture track.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetGestureKeyInfo(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iTrackNum, // IN: gesture track.

 long iKeyNum, // IN: gesture key.

 double* oTime, // OUT: time of key.

 double* oValue, // OUT: value of key.

 double* oDerivativeIn, // OUT: incoming derivative of key.

 double* oDerivativeeOut); // OUT: outgoing derivative of key.

Get all the info for a particular gesture key by calling TalkBackGetGestureKeyInfo, passing the previous analysis as the first parameter (see Example 8-39). The result of the function is stored in the variables pointed to by the last four parameters.
The specified gesture track number must be between 0 and numGestureTracks - 1, where numGestureTracks is the number of gesture tracks returned by the TalkBackGetNumGestureTracks function (see section 8.10.1, Getting the number of gesture tracks).

Gesture track values have corresponding constants in TalkBack.h which describe the gesture that track number represents: track 0 is TALKBACK_GESTURE_EYEBROW_RAISE_LEFT, track 1 is TALKBACK_GESTURE_EYEBROW_RAISE_RIGHT, etc.

The specified key number must be between 0 and numKeys - 1, where numKeys is the number of keys returned by the TalkBackGetNumGestureKeys function for that particular gesture track (see section 8.10.2, Getting the number of gesture keys for a track).

This is the most efficient format for data returned from the analysis object. Called for each key and for each track, TalkBackGetGestureKeyInfo provides data similar to what would be generated by hand by a professional animator (i.e., with the minimum number of keys necessary to define the function curves). The client application must be able to interpolate the gesture’s weight between the keys provided by generating the appropriate function curve from the derivative in/out values.

The time value returned is a floating-point number representing the time in seconds for that key.

For eyebrows and blinks, the target value returned is a floating-point number representing the weight of that target at that key.

For all the other gesture tracks, the target value returned is floating-point number between -180.0 and 180.0, representing an Euler angle in degrees. 0.0 means there is no rotation about the axis represented by the gesture track, and any other value means there is some rotation about the axis.

The values for the incoming and outgoing derivatives are derived from the Bezier spline at each key. For the time being, the values of both derivatives coincide, but in future releases of TalkBack, the condition of the continuous first derivative may not be true. Thus, TalkBack provides both left (incoming) and right (outgoing) derivatives for future compatibility. The derivative is measured in the track units per millisecond.

The incoming and outgoing derivatives can usually be mapped to an incoming and outgoing slope respectively, but if desired, ignoring the derivatives and setting slopes to zero can provide an approximation of the function curves for gestures. However, it is always preferable to use the actual derivative values to generate accurate function curves.

Example 8-39: Getting gesture key info

// GETTING GESTURE KEY INFO (TIME, VALUE, DERIVATIVE IN, DERIVATIVE OUT)

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long trackNum = 2; // example

long keyNum = 4; // example

double targetTimeSec = 0.0;

double targetValue = 0.0;

double targetDerivativeIn = 0.0;

double targetDerivativeOut = 0.0;

TALKBACK_ERR err = TalkBackGetGestureKeyInfo(

 pAnalysis,

 trackNum,

 keyNum,

 &targetTimeSec,

 &targetValue,

 &targetDerivativeIn,

 &targetDerivativeOut);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in targetTimeSec, targetValue,

 // targetDerivativeIn, and targetDerivativeOut.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number or key number is less than zero or exceeds the total number of tracks or keys available.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.10.4 Getting a gesture value at a frame

// Gets the value of the function curve for a gesture integrated over the

// specified frame.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetGestureValueAtFrame(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iTrackNum, // IN: gesture track.

 long iFrameNum, // IN: frame number.

 double* oResult); // OUT: value of function curve integrated over frame.

To get the value of a gesture at a frame, call TalkBackGetGestureValueAtFrame, passing the previous analysis as the first parameter (see Example 8-40). The result of the function is stored in the variable pointed to by the last parameter.

This function calculates the average value of the function curve (via integration) during this frame of animation. Compare with TalkBackGetGestureValueAtTime, which returns the instantaneous value.

This function might be used to get the value of a gesture at every frame, removing the need for the client application to perform any interpolation. However, this generates far more data (a key at every frame in every track) than TalkBackGetGestureKeyInfo.

The specified gesture track number must be between 0 and numGestureTracks - 1, where numGestureTracks is the number of gesture tracks returned by TalkBackGetNumGestureTracks (see section 8.10.1, Getting the number of gesture tracks).

Gesture track values have corresponding constants in TalkBack.h which describe the gesture that track number represents: track 0 is TALKBACK_GESTURE_EYEBROW_RAISE_LEFT, track 1 is TALKBACK_GESTURE_EYEBROW_RAISE_RIGHT, etc.

The specified frame number must be between minFrame and maxFrame, where minFrame and maxFrame are the first and last frame numbers returned by TalkBackGetFirstFrameNum and TalkBackGetLastFrameNum, respectively (see sections 8.5.1, Getting the first frame number and 8.5.2, Getting the last frame number, respectively).

For eyebrows and blinks, the target value returned is a floating-point number representing the weight of that target at that frame.

For all the other gesture tracks, the target value returned is a floating-point number between -180.0 and 180.0, representing an Euler angle in degrees. 0.0 means there is no rotation about the axis represented by the gesture track, and any other value means there is some rotation about the axis.

Example 8-40: Getting a gesture value at a frame
// GETTING A GESTURE VALUE AT A FRAME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long trackNum = 2; // example

long frameNum = 4; // example

double gestureValue = 0.0;

TALKBACK_ERR err = TalkBackGetGestureValueAtFrame(

 pAnalysis,

 trackNum,

 frameNum,

 &gestureValue);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in gestureValue.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number or frame number is out of range.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.10.5 Getting a gesture value at a time

// Gets the value of the function curve for the specified gesture track at the

// specified time.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetGestureValueAtTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iTrackNum, // IN: gesture track.

 double iTime, // IN: time in seconds.

 double* oResult); // OUT: value of the function curve.

To get the value of a gesture at a particular time, call TalkBackGetGestureValueAtTime, passing the previous analysis as the first parameter (see Example 8-41). The result of the function is stored in the variable pointed to by the last parameter.
This function returns the exact value of the function curve at this instant in time. Compare this with TalkBackGetGestureValueAtFrame, which returns the averaged value for a frame. This allows the client application access to the value of a gesture at any instant in time without having to perform any interpolation. In combination with TalkBackGetGestureDerivativesAtTime, this call provides the same information as TalkBackGetGestureKeyInfo, but at any time, not just where TalkBack places keys.

The specified gesture track number must be between 0 and numGestureTracks - 1, where numGestureTracks is the number of gesture tracks returned by the TalkBackGetNumGestureTracks function (see section 8.10.1, Getting the number of gesture tracks).

Gesture track values have corresponding constants in TalkBack.h which describe the gesture that track number represents: track 0 is TALKBACK_GESTURE_EYEBROW_RAISE_LEFT, track 1 is TALKBACK_GESTURE_EYEBROW_RAISE_RIGHT, etc.

For eyebrows and blinks, the target value returned is a floating-point number representing the weight of that target at that time.

For all the other gesture tracks, the target value returned is a floating-point number between -180.0 and 180.0, representing an Euler angle in degrees. 0.0 means there is no rotation about the axis represented by the gesture track, and any other value means there is some rotation about the axis.

If the specified time is outside the range where speech gestures animation is defined, zero is returned for any given track.

Example 8-41: Getting a gesture value at a time
// GETTING A GESTURE VALUE AT A TIME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long trackNum = 4; // example

double requestTimeSec = 20.86; // example

double gestureValue = 0.0;

TALKBACK_ERR err = TalkBackGetGestureValueAtTime(

 pAnalysis,

 trackNum,

 requestTimeSec,

 &gestureValue);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in gestureValue.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number is less than zero or exceeds the total number of tracks available.

	TALKBACK_INVALID_TIME_ERR
	The time is out of range.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

8.10.6 Getting gesture function curve derivatives at a time

// Gets the derivatives of the function curve for the specified gesture track at

// the specified time.

TALKBACK_ERR // RETURNS: TALKBACK_NOERR or error code

TalkBackGetGestureDerivativesAtTime(

 TALKBACK_ANALYSIS* iAnalysis, // IN: analysis returned by TalkBackGetAnalysis

 long iTrackNum, // IN: gesture track.

 double iTime, // IN: time in seconds.

 double* oDerivativeIn, // OUT: incoming derivative of the function curve.

 double* oDerivativeOut); // OUT: outgoing derivative of the function curve.

To get the function curve derivatives of a gesture at a particular time, call TalkBackGetGestureDerivativesAtTime, passing the previous analysis as the first parameter (see Example 8-42). The result of the function is stored in the variables pointed to by the last two parameters.
This function allows the client application access to the derivative of a gesture’s function curve at any instant in time. In combination with TalkBackGetGestureValueAtTime this call provides the same information as TalkBackGetGestureKeyInfo, but at any time, not just where TalkBack places keys.
The specified gesture track number must be between 0 and numGestureTracks - 1, where numGestureTracks is the number of gesture tracks returned by the TalkBackGetNumGestureTracks function (see section 8.10.1, Getting the number of gesture tracks).

Gesture track values have corresponding constants in TalkBack.h which describe the gesture that track number represents: track 0 is TALKBACK_GESTURE_EYEBROW_RAISE_LEFT, track 1 is TALKBACK_GESTURE_EYEBROW_RAISE_RIGHT, etc.

The values for the incoming and outgoing derivatives are derived from the Bezier spline at the specified time. For the time being, the values of both derivatives coincide, but in future releases of TalkBack, the condition of the continuous first derivative may not be true. Thus, TalkBack provides both left (incoming) and right (outgoing) derivatives for future compatibility. The derivative is measured in the track units per millisecond.

The incoming and outgoing derivatives can usually be mapped to an incoming and outgoing slope respectively, but if desired, ignoring the derivatives and setting slopes to zero can provide an approximation of the function curves for gestures. However, it is always preferable to use the actual derivative values to generate accurate function curves.

If the specified time is outside the range where speech gestures animation is defined, zero values are returned as the values of both derivatives for any given track.
Example 8-42: Getting gesture function curve derivatives at a time
// GETTING GESTURE FUNCTION CURVE DERIVATIVES AT A TIME

// NOTE: pAnalysis was obtained by a previous call to TalkBackGetAnalysis().

long trackNum = 4; // example

double requestTimeSec = 20.64; // example

double derivativeIn = 0.0;

double derivativeOut = 0.0;

TALKBACK_ERR err = TalkBackGetGestureDerivativesAtTime(

 pAnalysis,

 trackNum,

 requestTimeSec,

 &derivativeIn,

 &derivativeOut);

if (err != TALKBACK_NOERR)

{

 // Get the error description.

 char errorDesc[256] = "";

 TalkbalkGetErrorString(err, sizeof(errorDesc), errorDesc);

 // Report or log the error...

}

else

{

 // The function succeeded and filled in derivativeIn and derivativeOut.

}

	Return Value
	Condition

	TALKBACK_NOERR
	Success.

	TALKBACK_NULL_PARAMETER_ERR
	Analysis object is NULL or result holder is NULL.

	TALKBACK_INVALID_ANALYSIS_ERR
	The analysis object is invalid.

	TALKBACK_INVALID_INDEX_ERR
	The track number is less than zero or exceeds the total number of tracks available.

	TALKBACK_INVALID_TIME_ERR
	The time is out of range.

	TALKBACK_INTERNAL_ERR
	An internal error has occurred.

9 Pseudocode Examples

This section provides pseudocode examples for several different ways of using TalkBack to obtain lip-synchronization and speech gesture data. Be sure to refer to TalkBack.h for useful constants and additional information.

9.1 Speech Target and Gesture Function Curve Pseudocode

The pseudocode in Example 9-1 shows how to get speech target and gesture function curve output. Note that when you run analysis, you can get both speech target data and gesture data: there is no need to run analysis again to get gesture data.

Example 9-1: Speech target and gesture function curve pseudocode

call TalkBackStartupLibrary

.

.

.

if using a TALKBACK_ANALYSIS_SETTINGS structure

 make sure that OptimizeForFlipbook is set to false (zero)

call TalkBackGetAnalysis

loop through speech target tracks from T = 0 to TalkBackGetNumSpeechTargetTracks - 1

{

 loop through keys from K = 0 to TalkBackGetNumSpeechTargetKeys – 1, specifying

 speech target track T

 {

 call TalkBackGetSpeechTargetKeyInfo, specifying speech target track T and

 key K

 use the time, value, derivative in, and derivative out data to set up a key

 in your system

 }

}

loop through gesture target tracks from T = 0 to TalkBackGetNumGestureTracks - 1

{

 loop through keys from K = 0 to TalkBackGetNumGestureKeys – 1, specifying

 gesture track T

 {

 call TalkBackGetGestureKeyInfo, specifying gesture track T and key K

 if T is an eyebrow or blink track

 {

 value is a weight

 use the time, value, derivative in, and derivative out data to set up a

 key in your system

 }

 else

 {

 value is an Euler angle in degrees, handle it appropriately

 use the time, value, derivative in, and derivative out data to set up a

 key in your system

 }

 }

}

call TalkBackFreeAnalysis

.

.

.

call TalkBackShutdownLibrary
9.2 Flipbook Pseudocode

The pseudocode in Example 9-2 shows how to get flipbook output. Note that flipbook output usually only deals with speech target data. Gesture data is difficult to make use of in a flipbook application where you’re typically using TalkBack output to display one of a number of static images for each frame, but there’s nothing to prevent you from calling the frame-based gesture routines while you’re calling flipbook routines.

Example 9-2: Flipbook pseudocode

call TalkBackStartupLibrary

.

.

.

set up a TALKBACK_ANALYSIS_SETTINGS structure

make sure that fOptimizeForFlipbook is set to true (not zero)

call TalkBackGetAnalysis

loop through frames from F = TalkBackGetFirstFrameNum to TalkBackGetLastFrameNum

{

 call TalkBackGetDominantSpeechTargetAtFrame, specifying frame F

 draw it/save it/output it, etc.

}

call TalkBackFreeAnalysis

.

.

.

call TalkBackShutdownLibrary
9.3 Weighted Speech Target and Gesture Pseudocode

The pseudocode in Example 9-3 shows how to get weighted speech target and gesture output. Note that when you run analysis, you can get both speech target data and gesture data: there is no need to run analysis again to get gesture data.

Example 9-3: Weighted speech target and gesture pseudocode

call TalkBackStartupLibrary

.

.

.

if using a TALKBACK_ANALYSIS_SETTINGS structure, making sure that fOptimizeForFlipbook

 is set to false (zero)

call TalkBackGetAnalysis

loop through frames from F = TalkBackGetFirstFrameNum to TalkBackGetLastFrameNum

{

 loop through speech target tracks from T = 0 to

 TalkBackGetNumSpeechTargetTracks - 1

 {

 call TalkBackGetSpeechTargetValueAtFrame, specifying frame F and speech

 target track T

 draw it/save it/output it, etc.

 }

 loop through gesture tracks from T = 0 to TalkBackGetNumGestureTracks - 1

 {

 call TalkBackGetGestureTargetValueAtFrame, specifying frame F and gesture

 track T

 if T is an eyebrow or blink track

 {

 value is a weight

 draw it/save it/output it, etc.

 }

 else

 {

 value is an Euler angle in degrees, handle it appropriately

 draw it/save it/output it, etc.

 }

 }

}

call TalkBackFreeAnalysis

.

.

.

call TalkBackShutdownLibrary
10 Error Codes and Explanations

All TalkBack routines return an error code when an error occurs, or TALKBACK_NOERROR if the routine succeeds. Each error code and explanations of those codes, along with indications as to what error may have occurred, are presented in the table below. Error codes may have a slightly different meaning depending on which function returned them. For example, TALKBACK_INVALID_INDEX_ERR may indicate an invalid frame index or invalid phoneme index depending on which routine returns it. See the individual routine documentation above for more detailed information.

	Error code
	Description

	TALKBACK_NOERR
	Success (no error)

	TALKBACK_ERROR
	An unknown or unspecified error occurred. This error should not occur except in rare, undetermined conditions. There is no single solution except to try passing different parameters to narrow down the cause of the error.

	TALKBACK_STARTUP_FAILED_ERR
	TalkBack startup failed, most likely because the required TalkBack core data files could not be found, or are invalid. Make sure the location of the core data files was correctly specified. Make sure the core data files are the ones that were supplied with the SDK.

	TALKBACK_SHUTDOWN_FAILED_ERR
	TalkBack shutdown failed. Either memory has been corrupted, or the TalkBack_??.lib library file itself is corrupt.

	TALKBACK_CORE_DATA_NOT_FOUND_ERR
	The required TalkBack core data files could not be found, or are invalid. Make sure the location of the core data files was correctly specified.

	TALKBACK_NULL_PARAMETER_ERR
	A NULL parameter was passed (inappropriately) to a TalkBack library routine that required a non-NULL pointer.

	TALKBACK_INVALID_PARAMETER_ERR
	An invalid parameter (other than a NULL pointer) was passed to a TalkBack library routine. Make sure that you are calling the library routines properly.

	TALKBACK_INVALID_ANALYSIS_ERR
	The TALKBACK_ANALYSIS object passed to a library routine was invalid or corrupt. TALKBACK_ANALYSIS objects should be passed to TalkBackGetAnalysis (see section 8.4.1, Getting an analysis object) before passing them to any other library routine. Do not pass TALKBACK_ANALYSIS objects to any library routine after freeing them with TalkBackFreeAnalysis. Do not directly modify the data or fields in a TALKBACK_ANALYSIS object in any way. Do not call TalkBackGetAnalysis (see section 8.4.1, Getting an analysis object) with a local TALKBACK_ANALYSIS variable that goes out of scope before being passed to a library routine. Do not overwrite or free the memory used by a TALKBACK_ANALYSIS object.

	TALKBACK_ANALYSIS_FAILED_ERR
	The sound file you passed to TalkBackGetAnalysis (see section 8.4.1, Getting an analysis object) is not in the proper format to be analyzed, the settings or parameters you specified to TalkBackGetAnalysis are invalid, your sound file is corrupt, unreadable, is not uncompressed PCM or AIFF, does not have a sample size of 8 or 16 bits, does not have a sample rate from 8KHz to 48Khz, or is shorter than 64 milliseconds. Use a different sound, resample the sound, lengthen the sound, or use TalkBackCheckSoundFile (8.3.1, Checking a sound file) to check the sound's properties before passing it to analysis. See the documentation for TalkBackGetAnalysis (section 8.4.1, Getting an analysis object) for precise information on the parameters.

	TALKBACK_INVALID_INDEX_ERR
	An invalid index was passed to a TalkBack library routine. For example, TalkBackGetPhoneme (8.6.2, Getting the enumeration of a phoneme) requires a phoneme index from 0 to the number of phonemes minus one. You will receive this error if the index you specified is negative or too large.

	TALKBACK_INVALID_TIME_ERR
	An invalid time value was passed to a TalkBack library routine. TalkBack routines expect time in seconds, not milliseconds.

	TALKBACK_INTERNAL_ERR
	TalkBack encountered an internal error. Please notify LIPSinc.

	TALKBACK_COULD_NOT_LOAD_SOUND_ERR
	TalkBack could not load the sound file. An incorrect file name may have been specified, the file may not exist, the directory may not exist, or the specified sound file may not be capable of being analyzed (see section 8.3.1, Checking a sound file prior to analysis for more information on supported file formats).

	TALKBACK_STARTUP_NOT_CALLED
	A TalkBack library routine was called before calling TalkBackStartupLibrary (see section 8.1.1, Starting up the library).

	TALKBACK_CONFIG_PARSE_ERROR
	The specified configuration file from the fConfigFile field in the TALKBACK_ANALYSIS_SETTINGS structure passed to TalkBackGetAnalysis (see section 8.4.1, Getting an analysis object) is invalid, perhaps because it is missing phonemes or contains inconsistent information. See the mapping file documentation for the precise format of the configuration file.

Phoneme List

A list of the phonemes detected by TalkBack, with sample words in which those phonemes occur:

	Phoneme
	Sound in bold capital letters in a sample word

	iy
	bEEt

	ih
	bit

	eh
	bet

	ey
	bAIt

	ae
	bat

	aa
	bOtt

	aw
	bOUt

	ay
	bite

	ah
	but

	ao
	bOUght

	oy
	bOY

	ow
	bOAt

	uh
	bOOk

	uw
	bOOt

	er
	bIRd

	ax
	About

	s
	Sea

	sh
	She

	z
	Zone

	zh
	aZure

	f
	Fin

	th
	Thin

	v
	Van

	dh
	Then

	m
	MoM

	n
	NooN

	ng
	siNG

	l
	Lay

	r
	Ray

	w
	Way

	y
	Yacht

	hh
	Hay

	b
	Bee

	d
	Day

	jh
	Joke

	g
	Gay

	p
	Pea

	t
	Tea

	k
	Key

	ch
	CHoke

	Sil
	(silence)

	ShSil
	ShortSil
(Short Silence -- a special case of silence where the mouth does not close, as during a short pause before resuming speech)

	Flap
	muDDy

Viseme Descriptions And Default Mapping Weights

Appendix B Contents

73B1 Getting Started

74B1.1
Speech Targets

75B1.2
Facial Animation Targets:

75B2 Morph Targets

76B2.1
Neutral Pose – “Silent”

77B2.2
Speech-Related Targets

77B2.2.1
Target (B/M/P) – “Bump”

79B2.2.2
Target (K/G) – “Cage”

80B2.2.3
Target (Ch/J) – “Church”

81B2.2.4
Target (Er) – “Earth”

82B2.2.5
Target (EE) – “Eat”

83B2.2.6
Target (F/V) – “Fave”

84B2.2.7
Target (Ih) – “If”

85B2.2.8
Target (N/NG) – “New”

86B2.2.9
Target (Oh) – “Oat”

87B2.2.10
Target (Ah) – “Ox”

88B2.2.11
Target (R) – “Roar”

89B2.2.12
Target (S/Z) – “Size”

90B2.2.13
Target (Th) – “Though”

91B2.2.14
Target (T/L/D) – “Told”

92B2.2.15
Target (W/OO) – “Wet”

93B2.3
Facial Animation Targets

93B2.3.1
Targets (Blink Left) – “Blink_L” and (Blink Right) – “Blink_R”

94B2.3.2
Targets (Eyebrow Up Left) – “EB_Up_L” and (Eyebrow Up Right) – “EB_Up_R”

95B3 Meta-targets

95B3.1
Meta-target: Jaw Open, no cheek movement

96B3.2
Meta-target: Lip corners up/down

97B3.3
Meta-target: Widen Lips

98B3.4
Meta-target: Lower Lip Up

99B3.5
Meta-target: Lower Lip Down

100B3.6
Meta-target: Narrow and Extrude

101B3.7
Meta-target: Tongue Down

102B3.8
Meta-target: Tongue Out

103B3.9
Meta-target: Tongue to Teeth

104B3.10
Meta-target: Upper Lip Up

105B3.11
Meta-target: Cheeks Down

106B3.12
Meta-target: Cheeks In

107B3.13
Meta-target: Narrow and Extrude with Cheek Movement

108B3.14
Meta-target: Jaw Open with Cheek Movement

109B3.15
Meta-target: Upper Lip Up with Cheek Movement

110B4 Speech Related Head Movement

112B5 Default Mapping Weights

Appendix B Figures

76Figure B1: Neutral Pose – “Silent”

78Figure B2: “Bump” Pose

79Figure B3: “Cage” Pose

80Figure B4: “Church” Pose

81Figure B5: “Earth” Pose

82Figure B6: "Eat" Pose

83Figure B7: "Fave" Pose

84Figure B8: "If" Pose

85Figure B9: "New" Pose

86Figure B10: "Oat" Pose

87Figure B11: "Ox" Pose

88Figure B12: "Roar" Pose

89Figure B13: "Size" Pose

90Figure B14: "Though" Pose

91Figure B15: "Told" Pose

92Figure B16: "Wet" Pose

93Figure B17: "Eye Blink" Pose

94Figure B18: "Eyebrows Lifted" Pose

95Figure B19: "Jaw Open" Meta-target

96Figure B20: "Lip Corners Up/Down" Meta-target

97Figure B21: "Widen Lips" Meta-target

98Figure B22: "Lower Lip Up" Meta-target

99Figure B23: "Lower Lip Down" Meta-target

100Figure B24: "Narrow and Extrude" Meta-target

101Figure B25: "Tongue Down" Meta-target

102Figure B26: "Tongue Out" Meta-target

103Figure B27: "Tongue to Teeth" Meta-target

104Figure B28: "Upper Lip Up" Meta-target

105Figure B29: "Cheeks Down" Meta-target

106Figure B30: "Cheeks In" Meta-target

107Figure B31: " Narrow and Extrude with Cheek Movement " Meta-target

108Figure B32: "Jaw Open with Cheek Movement" Meta-target

109Figure B33: "Upper Lip Up with Cheek Movement" Meta-target

110Figure B34: Bones Set-up Example

111Figure B35: Pivot Point Positioning

112Figure B36: Default Mapping Weights

B1
Getting Started

This Appendix will provide you with a comprehensive guide to “rigging” 3D character heads for automatic lip-synchronized speech and facial animation in a TalkBack format. This explanation includes verbal descriptions of mouth and facial position characteristics as well as visual representations of facial positions to give you a good reference for “rigging” your 3D heads. The are two different methods for generating speech-related targets described here. The first addresses the development of specific morph target s individually. The second involves the generation of “Master” or “Meta-targets” that can be mixed together to form morph target s.

LIPSinc has designed TalkBack with default settings for fifteen (15) morph targets for lip-synchronization (speech targets). In addition to the lip-synching tracks, TalkBack provides automated facial animation and include four additional morph targets for the eyes and eyebrows. We recognize that a wide variety of rigs are used in lip synching and facial animation, many using fewer targets, a few using many more. TalkBack default settings can be changed or mapped to support fewer or additional targets (by specifying a different INI file). However, for the purposes of this document, we will focus on the default targets that will get you on your way to automating the lip-synchronization process.

B1.1 Speech Targets

The names used to designate morph targets don't really matter (and are not set up anywhere in TalkBack), but it is always convenient to agree on the set of names for the targets for ease of explanations. We use the following names for the neutral position and the fifteen speech-related morph targets:

· Silent (neutral)

· Bump (B/M/P)

· Cage (K/G)

· Church (Ch/J)

· Earth (Er)

· Eat (EE)

· Fave (F/V)

· If (Ih)

· New (N/NG)

· Oat (Oh)

· Ox (Ah)

· Roar (R)

· Size (S/Z)

· Though (Th)

· Told (T/L/D)

· Wet (W/OO)

B1.2 Facial Animation Targets:

The following names are used for the four facial animation targets:

· Blink_L

· Blink_R

· EB_Up_L

· EB_Up_R

B2 Morph Targets

The morph targets shown and described here work well for the "James" character shown in the figures but are only an example. You may want to do less or more for your characters depending on their general attitude, demeanor or the voice you intend to use with them.

Cheek movement is not discussed in the individual morph target descriptions (although it is treated in the meta-targets section). In general, cheek movement follows the corners of the lips, always moving less than the corners do. If a morph target has the lips narrowing, the cheeks should move in somewhat less than the corners of the lips do, if the jaw is open, this will pull down the cheeks a bit. In addition, any target with the upper lip pulled up (F/V for example) causes a slight lift in the cheeks. Of course, any other secondary animation is fine as well…jowls, cigar wiggling, etc.

Neutral Pose – “Silent”

This is the relaxed position of the face, and the reference for all morph targets.

If you haven't decided on the manner of speech, or voice, for the character, it’s usually best to make the neutral pose expressionless. At most a slight upturning of the lips can be used to give the character a pleasant, alert expression rather than a deadpan.

[image: image3.jpg]

Figure B1: Neutral Pose – “Silent”

Speech-Related Targets

B2.1.1 Target (B/M/P) – “Bump”

Example words: BuMP, MoM, bottoM, Bee, Pea

The B/M/P target shows the mouth in the position for pronouncing B, M, and P sounds. This target has very clear characteristics:

· The jaw should be slightly open.

· The lips must be closed.

· The lips may be compressed slightly and rolled in toward the inside of the mouth.

· The corners of the mouth may be widened, as in a slight smile.

The tongue cannot be seen, so it can remain in the default position.

Try saying the word “Bump” without letting your lips touch, and you’ll see the importance of having the lips closed for this target.

There are some differences between the three sounds represented. You can hold the “M” sound continuously: “emmmm….”, whereas both “B” and “P” sound only once, abruptly, after the lips open. This is because M is nasal, and we can keep air flowing through the nose even though the lips are sealed. B and P can have a slight “h” sound after them, called an aspiration, when they occur at the start of a syllable. This cannot be seen on the lips.

Some people purse the lips a little more for “P” than “B” sounds, or compress them a little more for “M” than for either of the others. These effects are too subtle to show up in lip-synching, though. For our purposes the shape of the mouth is virtually identical in all three cases.

[image: image4.jpg]

Figure B2: “Bump” Pose

B2.1.2 Target (K/G) – “Cage”

Example words: Cage, Gay, Key

The shape of this target is only weakly connected with the K and hard G (as in “guy,” not “giraffe”) it represents. In fact it is possible to make these sounds with the lips in a wide variety of shapes. The jaw is in a medium open position.

· The corners of the lips are slightly widened and lifted.

· The lips are not extruded.

· The tongue is at the bottom of the mouth.

We make the “Kuh” and “Guh” sounds with the back of the tongue and the soft palate. As long as the mouth is open to issue the sound, the lips can pretty much do as they like. In practice, we usually hold the lips in a shape similar to the nearest vowel. If you make this shape a neutral open jaw position, your K/G sounds will look great.

[image: image5.jpg]i

Figure B3: “Cage” Pose

B2.1.3 Target (Ch/J) – “Church”

 Example words: Church, She, Azure, Joke, Choke

Characteristics:

· The jaw is closed or very nearly so.

· The lips are strongly extruded, but not rounded into the O shape of the Oh and W/OO targets.

· The lip corners are narrowed inward somewhat.

Some phonetics texts break J and CH into two sounds each – but for lip-synching they can each be considered a single sound. The difference between CH and J sounds is that we pronounce J with “voicing” and CH without. Voicing is vibration of the vocal cords during speech. The difference is easier to hear in S (unvoiced) versus Z (voiced).

Voicing doesn’t show up on the face, it all occurs in the larynx, allowing us to use one target for CH and J (and one for F/V, and one for S/ Z, for the same reason).

[image: image6.jpg]

Figure B4: “Church” Pose

B2.1.4 Target (Er) – “Earth”

Example words: EARth, bIRd, buttER

This target is associated with the “R” sound in the word “earth.” This is very different in shape from the R in “round” or “arranged.” See the R target for a description of this shape and sound. The R in earth is considered by linguists to be a half-vowel in English (with some difference between American and English speakers), and in fact the target transcription of the word “earth” would simply consist of this target followed by the one for TH.

Characteristics:

· The jaw is in a medium open position.

· The corners of the lips are pulled slightly down.

· The lips are slightly extruded.

· There is no appreciable narrowing inward of the lip corners.

· The tongue floats in the middle of the mouth, slightly pulled back.

[image: image7.jpg]

Figure B5: “Earth” Pose

B2.1.5 Target (EE) – “Eat”

Example words: EAt

This is arguably the most distinct and identifiable of the vowel mouth shapes, and represents a single sound, the E in “eat.” Note that the corners of the lips “burrow into” the cheeks, rather than simply moving over the surface of the face.

Characteristics:

· The jaw is in a medium open position.

· The lip corners are pulled to their widest position.

· The lip corners are pulled slightly upward, as in a smile.

[image: image8.jpg]

Figure B6: "Eat" Pose

B2.1.6 Target (F/V) – “Fave”

 Example words: FaVe, Fin, Van

This is a very distinctive mouth shape, but it comes in two flavors. The sound of the F and V are produced by the turbulent flow of air between the upper teeth and the lower lip, which is pressed against them. This can be accomplished with the lower lip curled in or pushed out.

Characteristics:

· The jaw should be open enough to allow the lower lip to fit between the teeth.

· The lower lip must be pressed against the upper teeth.

· The lip corners are widened slightly.

· The lower lip is rolled in toward the inside of the mouth OR it is pushed slightly outward.

We recommend the former of these options. The latter option can be approximated by partially morphing to a lip-curled-in F shape.

F and V, like CH and J, differ only in that the former is voiced and the latter is not.

[image: image9.jpg]

Figure B7: "Fave" Pose

B2.1.7 Target (Ih) – “If”

 Example words: If, bit, bEt, bAit, bAt, bOUt, bite, bUt, abOUt, debit, sUspect

Ih is the Swiss Army Knife of targets. It is the medium mouth open position used to pronounce many of the “front” vowels (those in which the tongue is in the front of the mouth).

Characteristics:

· The jaw is in a medium open position.

· The lip corners are very slightly widened from their relaxed position.

· The lips are slightly more open than would be caused by the jaw movement alone.

· The tongue is toward the bottom of the mouth.

In isolation, the various sounds represented by this target might imply slightly different mouth positions, “bat” entailing greater distance between the upper and lower lip than “bit,” for example. In practice, this difference doesn’t matter nearly as much as the context within the word in which the sound is placed, and an averaging of all these shapes work well for lip-synching.

Another issue is that some of these vowel sounds are actually diphthongs: a vowel in which there is a change in quality during a single syllable. “Bite” is a good example of this—it can resemble “bah-eat” if drawn out. In normal speech, however, a single target gives better results than two for a diphthong.

[image: image10.jpg]

Figure B8: "If" Pose

B2.1.8 Target (N/NG) – “New”

Example words: NooN, siNG, buttoN, washINGton, wiNNer

This target is associated with the N sound and its relative, the NG sound in “ing.”

Characteristics:

· The jaw is in a medium open position.

· The lip corners are slightly narrowed inward from their relaxed position.

· The lips are slightly more open than would be caused by the jaw movement alone.

· The tongue is curved up to the alveolar ridge, just behind and above the upper teeth.

That is, the shape is very similar to the If target, with the exception of the tongue. This can be verified by the ease with which one can say the word “in” without moving anything except the tongue. If anything, the top and bottom lip may be closed slightly more in N/NG than in If.

This target also closely resembles that for T/L/D.

[image: image11.jpg]

Figure B9: "New" Pose

Target (Oh) – “Oat”

Example words: OAt, bOY, bOAt

This target has a round O shape, more so than the Ah target, not as round as the target for W/OO.

Characteristics:

· The jaw is opened somewhat more than the medium position.

· The lip corners are pulled slightly in

· The lips are rounded toward an O shape (contrast with the square shape of Ch/J)

· The lips are moderately extruded.

The targets Ah, Oh, and W/OO benefit from comparison. Considered in this order, they increase in extrusion and roundness, and decrease in jaw opening, lip width, and lip opening.

[image: image12.jpg]

Figure B10: "Oat" Pose

B2.1.9 Target (Ah) – “Ox”

Example words: Ox, bOUght, robOt

This viseme is very open, making it a favorite sound for tongue-depressor-wielding doctors.

Characteristics:

· The jaw is open wide.

· The lip corners are at their relaxed width.

· The lips are slightly rounded.

· The lips are slightly extruded.

The tongue lies in the bottom of the mouth.

[image: image13.jpg]

Figure B11: "Ox" Pose

B2.1.10 Target (R) – “Roar”

Example words: Roar, Ray

The target shows an R that is more closed, round, and extruded than that for Er, and in fact more closely resembles the W/OO target.

Characteristics:

· The jaw is slightly open.

· The lips are very narrow.

· The lips are very extruded.

Confusing the two R sounds is a common problem in lip-synching.

[image: image14.jpg]

Figure B12: "Roar" Pose

B2.1.11 Target (S/Z) – “Size”

Example words: SiZe, Sea, Zone

The S and Z sounds represented by this target differ only in voicing (Z is voiced), similar to CH/J and F/V. Note that the Z in aZure is covered by the Ch/J target.

Characteristics:

· The teeth must be clenched (jaw closed) or very nearly so.

· The lips narrow inward slightly though not quite as much as in Ch/J).

· The corners of the lips are at their relaxed height.

· The lips are opened slightly.

· The lips are extruded slightly.

The S/Z, Ch/J, F/V, and Th targets represent a set of sounds very similar to the ear but very different on the face. For realistic lip-synching, it is important that they be made visually distinct.

[image: image15.jpg]

Figure B13: "Size" Pose

B2.1.12 Target (Th) – “Though”

Example words: THough, THin, THen

The target for TH sounds. The tongue is very visible and therefore very important in this target.

Characteristics:

· The jaw is open enough to admit the tip of the tongue.

· The tip of the tongue is between the teeth.

· The lips are at their relaxed width.

As long as the tip of the tongue is between the teeth, the lips can assume a wide variety of shapes and still pronounce this sound correctly.

[image: image16.jpg]

Figure B14: "Though" Pose

B2.1.13 Target (T/L/D) – “Told”

Example words: ToLD, Lay, boTTLe, Day, Tea, muDDy, baT

This target, like "Ih" sees a lot of use in English. In addition to the T, L, and D sounds, it is also used in a somewhat diminished version, in “flaps,” the indistinct consonant between vowels, as the TT in “mutter.”

Characteristics:

· The jaw is in a medium open position.

· The lip corners are very slightly narrowed inward from their relaxed position.

· The lips are at their relaxed opening for this jaw position.

· The tongue is pressed against the back of the top teeth.

This makes it a very similar target to both "Ih" and N/NG, differing mainly in tongue position. It can also be slightly more closed than N/NG.

T and D are stops: the sound issues only when the tongue is released. L can be held continuously. See the note at B/M/P. Still, the mouth shape is sufficiently similar to warrant a single target.

There are two major kinds of L sounds in English—the word “little” contains both of them. We are ignoring the difference because it is mostly caused by tongue positioning which is all but unnoticeable in lip-synching.

[image: image17.jpg]

Figure B15: "Told" Pose

B2.1.14 Target (W/OO) – “Wet”

Example words: Wet, Way, Yacht, bOOk, bOOt, tOOt

This target is associated with both vowel and consonant sounds that are the most rounded and extruded. This is the kissing shape, slightly opened up.

Characteristics:

· The jaw is in a medium open position.

· The lips are very rounded.

· The lips are very extruded.

[image: image18.jpg]

Figure B16: "Wet" Pose

B2.2 Facial Animation Targets

B2.2.1 Targets (Blink Left) – “Blink_L” and (Blink Right) – “Blink_R”

This target shows the left eye blinking in a relaxed manner, without squinting.

Characteristics:

· The upper lid is pulled down.

· The lower lid is raised slightly.

· The eye is fully closed.

· The eyebrow does not move.

· There is no movement of the cheek.

· There is no wrinkling at the corner of the eye.

 [image: image19.jpg]

Figure B17: "Eye Blink" Pose

B2.2.2 Targets (Eyebrow Up Left) – “EB_Up_L” and (Eyebrow Up Right) – “EB_Up_R”

These targets show the left and right eyebrows lifted. Both targets must be used.

Characteristics:

· Both inner and outer sections of the eyebrow are raised.

· The forehead may be wrinkled.

· The eyelid is not pulled up.

[image: image20.jpg]

Figure B18: "Eyebrows Lifted" Pose

B3 Meta-targets

Morph targets differ from each other by a small number of characteristics. The jaw opens, the lips narrow or widen, are extruded or not, are pulled up or down, the tongue position is higher, lower, forward or back, etc. It can be very useful to construct a set of “master” targets (we call them meta-targets) that isolate these common features, and can be mixed together to form the final morph targets. Not only is the work streamlined, but the results are also more consistent and easier to edit. Following are a set of meta-targets LIPSinc has used on this and other characters with some success.

Unlike the targets described in Section 2, meta-targets are often used with negative weights to achieve the reverse effect. For example "Lower Lip Down" could be used to raise the lip in the Fave target.

B3.1 Meta-target: Jaw Open, no cheek movement

This target shows the jaw opening.

Characteristics:

· The jaw is open position.

· The bottom lip rotation matches the jaw rotation.

· The lower teeth follow the jaw (they’re attached, after all).

· The corners of the lips move about half or a little less as far as the center of the bottom lip

[image: image21.jpg]

Figure B19: "Jaw Open" Meta-target

B3.2 Meta-target: Lip corners up/down

This meta-target is used for fine vertical adjustments of the corners of the mouth.

Characteristics: The corners of the lips move down (negative morph weights are used to adjust the lips upward).

[image: image22.jpg]

Figure B20: "Lip Corners Up/Down" Meta-target

B3.3 Meta-target: Widen Lips

This meta-target is used for the "Eat" target.

Characteristics: The corners of the lips move outwards and back into the cheek, following the line of the teeth. The motion is somewhat less upward than in a smile, however.

[image: image23.jpg]

Figure B21: "Widen Lips" Meta-target

B3.4 Meta-target: Lower Lip Up

Used mainly for the Fave target.

Characteristics: The lower lip is raised and rotates inward. Since the jaw is closed, it intersects both the upper lip and the teeth.

[image: image24.jpg]

Figure B22: "Lower Lip Up" Meta-target

B3.5 Meta-target: Lower Lip Down

Pulls the lower lip down without opening the jaw.

Characteristics: The lower lip is pulled down and rotates outward.

[image: image25.jpg]

Figure B23: "Lower Lip Down" Meta-target

B3.6 Meta-target: Narrow and Extrude

The most difficult to construct of the meta-targets, this is essentially the “blowing a kiss” face. It is important to not simply narrow the lips by bringing the corners together, but to rotate them so that the lips are “pillowed” together at the sides. This is best seen by making this face in a mirror, but with the lips slightly open. Note that the corners of the mouth don’t come to a point, a common mistake.

Characteristics:

· The corners of the lips move inward along the line of the teeth

· The upper lip rotates up and the lower lip rotates down.

· Both lips are extruded (pushed out).

· The corners of the lips rotate so that more of the inside surface faces the front.

[image: image26.jpg]

Figure B24: "Narrow and Extrude" Meta-target

B3.7 Meta-target: Tongue Down

Controls the height of the tongue in the mouth.

Characteristics: The tongue rotates down as if hinged with the jaw.

[image: image27.jpg]

Figure B25: "Tongue Down" Meta-target

B3.8 Meta-target: Tongue Out

Moves the tongue out through the lips, for the Though target.

Characteristics: The tongue moves out so it penetrates the teeth and lips (the jaw shouldn’t move in this target).

[image: image28.jpg]

Figure B26: "Tongue Out" Meta-target

B3.9 Meta-target: Tongue to Teeth

Curls the tongue up to meet the back of the teeth, as in pronouncing T, N, L, etc.

Characteristics: The tongue curls up to touch the back of the teeth.

[image: image29.jpg]

Figure B27: "Tongue to Teeth" Meta-target

B3.10 Meta-target: Upper Lip Up

Pulls the upper lip up, as in J, Ch, and S.

Characteristics: The upper lip pulls up along the teeth and rotates slightly out.

[image: image30.jpg]

Figure B28: "Upper Lip Up" Meta-target

B3.11 Meta-target: Cheeks Down

Controls the up/down movement of the cheeks, for use with jaw opening and upper lip movement.

Characteristics: The cheeks move slightly downward. On most realistic characters, the motion should end at the lower edge of the eye orbit. The nasolabial fold (which runs from the wing of the nose downward to a point above the lip corner) may be smoothed out a little bit.

[image: image31.jpg]

Figure B29: "Cheeks Down" Meta-target

B3.12 Meta-target: Cheeks In

Controls the side-to-side movement of the cheeks, for use with narrowing and extruding the lips. A slight inward movement of the cheeks also accompanies jaw opening.

Characteristics: The cheeks move slightly inward and forward. The nasolabial fold (which runs from the wing of the nose downward to a point above the lip corner) may deepen somewhat.

[image: image32.jpg]

Figure B30: "Cheeks In" Meta-target

B3.13 Meta-target: Narrow and Extrude with Cheek Movement

The narrow and extrude meta-target, with some cheeks in mixed in.

Characteristics: Same as narrow and extrude, with cheek in set so that the cheek moves ½ to 2/3 as much as the lip corners.

[image: image33.jpg]

Figure B31: " Narrow and Extrude with Cheek Movement " Meta-target

B3.14 Meta-target: Jaw Open with Cheek Movement

The jaw open meta-target, with some cheeks in and cheeks down mixed in.

Characteristics: Same as jaw open, with cheeks in set so that the cheek moves horizontally ½ to 2/3 as much as the lip corners, and likewise cheeks down set to move the cheek vertically ½ to 2/3 as much as the lip corners.

[image: image34.jpg]

Figure B32: "Jaw Open with Cheek Movement" Meta-target

B3.15 Meta-target: Upper Lip Up with Cheek Movement

The Upper Lip Up, with some (negative) cheeks down mixed in.

Characteristics: Same as upper lip down, with cheeks down set so that the cheek moves ½ to 2/3 as much as the center of the upper lip.

[image: image35.jpg]

Figure B33: "Upper Lip Up with Cheek Movement" Meta-target

B4 Speech Related Head Movement

Talkback provides rotation tracks for the bends, twists, and side-to-side motion of the head during speech. Typically these will drive a head bone (although if there is no body or neck, they could drive the rotation part of the head mesh transform directly). As with all character setups, the head should be pivoted at its joint with the neck, and vertices of the head should move rigidly with the bone (issues like compression of jowls aside), with only the neck vertices allowed to deform.

Here is a sample bones setup:

[image: image36.png]

Figure B34: Bones Set-up Example

The hierarchy is obvious: head attached to neck attached to chest (root). The following illustration shows the proper positioning of the pivot point of the BN_Head bone.

[image: image37.jpg]

Figure B35: Pivot Point Positioning

Default Mapping Weights

If no configuration file is specified, TalkBack uses a hard-coded set of weights and targets, which assume a default character setup using 15 targets described in this appendix. The file DEFAULT_TARGET_MAP.INI, which ships with TalkBack, also contains these values, as a demonstration of the file format and as a starting point for creating new INI files. The TALKBACK_ANALYSIS object created using the DEFAULT_TARGET_MAP.INI (as shipped), and TALKBACK_ANALYSIS object created using no configuration files at all, are exactly the same. The default mapping values are reproduced in the following table:

	
	EE
	Er
	If
	Ah
	Oh
	W/OO
	S/Z
	Ch/J
	F/V
	Th
	T/L/D
	B/M/P
	N/nG
	R
	K/G

	Iy
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Ih
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Eh
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Ey
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Ae
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Aa
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Aw
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Ay
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Ah
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Ao
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Oy
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Ow
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Uh
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Uw
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Er
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Ax
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	S
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Sh
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Z
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Zh
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	F
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.70
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Th
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00

	V
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.70
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Dh
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00

	M
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00

	N
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00

	Ng
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00

	L
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00

	R
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00

	W
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Y
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Hh
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	B
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00

	D
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00

	Jh
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	G
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.20

	P
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00

	T
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00

	K
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.20

	Ch
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.85
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Sil
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	ShortSil
	0.00
	0.00
	0.20
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	Flap
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.50
	0.00
	0.00
	0.00
	0.00

Figure B36: Default Mapping Weights

TalkBack Function Calls

The following is an alphabetical list of all function calls for TalkBack.
TalkBackChangePhonemeEnd
39
TalkBackChangePhonemeEnum
40
TalkBackChangePhonemeStart
38
TalkBackCheckSoundFile
18
TalkBackCheckSpokenText
19
TalkBackDeletePhoneme
37
TalkBackFreeAnalysis
26
TalkBackGetAnalysis
23
TalkBackGetDominantSpeechTargetAtFrame
51
TalkBackGetErrorString
21
TalkBackGetFirstFrameNum
27
TalkBackGetFrameEndTime
30
TalkBackGetFrameStartTime
29
TalkBackGetGestureDerivativesAtTime
63
TalkBackGetGestureKeyInfo
58
TalkBackGetGestureValueAtFrame
60
TalkBackGetGestureValueAtTime
61
TalkBackGetLastError
22
TalkBackGetLastFrameNum
28
TalkBackGetNumGestureKeys
56
TalkBackGetNumGestureTracks
56
TalkBackGetNumPhonemes
31
TalkBackGetNumSpeechTargetKeys
46
TalkBackGetNumSpeechTargetTracks
46
TalkBackGetNumWords
42
TalkBackGetPhonemeEnum
32
TalkBackGetPhonemeEndTime
34
TalkBackGetPhonemeStartTime
33
TalkBackGetSoundFileMetrics
16
TalkBackGetSpeechTargetDerivativesAtTime
54
TalkBackGetSpeechTargetKeyInfo
48
TalkBackGetSpeechTargetValueAtFrame
50
TalkBackGetSpeechTargetValueAtTime
53
TalkBackGetVersion
14
TalkBackGetVersionString
15
TalkBackGetWord
43
TalkBackGetWordEndTime
45
TalkBackGetWordStartTime
44
TalkBackInsertPhoneme
36
TalkBackShutdownLibrary
14
TalkBackStartupLibrary
13
� You aren’t actually using single-threaded libraries, are you? Heaven forbid… (

ii
1

_1045305702

